Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TransformationHandler.cxx
Go to the documentation of this file.
1// @(#)root/tmva $Id$
2// Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss, Eckhard von Toerne, Jan Therhaag
3
4/**********************************************************************************
5 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6 * Package: TMVA *
7 * Class : TransformationHandler *
8 * Web : http://tmva.sourceforge.net *
9 * *
10 * Description: *
11 * Implementation (see header for description) *
12 * *
13 * Authors (alphabetical): *
14 * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
15 * Peter Speckmayer <speckmay@mail.cern.ch> - CERN, Switzerland *
16 * Joerg Stelzer <Joerg.Stelzer@cern.ch> - CERN, Switzerland *
17 * Jan Therhaag <Jan.Therhaag@cern.ch> - U of Bonn, Germany *
18 * Eckhard v. Toerne <evt@uni-bonn.de> - U of Bonn, Germany *
19 * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
20 * *
21 * Copyright (c) 2005-2011: *
22 * CERN, Switzerland *
23 * MPI-K Heidelberg, Germany *
24 * U. of Bonn, Germany *
25 * *
26 * Redistribution and use in source and binary forms, with or without *
27 * modification, are permitted according to the terms listed in LICENSE *
28 * (http://tmva.sourceforge.net/LICENSE) *
29 **********************************************************************************/
30
31/*! \class TMVA::TransformationHandler
32\ingroup TMVA
33Class that contains all the data information.
34*/
35
37
38#include "TMVA/Config.h"
39#include "TMVA/DataSet.h"
40#include "TMVA/DataSetInfo.h"
41#include "TMVA/Event.h"
42#include "TMVA/MsgLogger.h"
43#include "TMVA/Ranking.h"
44#include "TMVA/Tools.h"
45#include "TMVA/Types.h"
48#include "TMVA/VariableInfo.h"
54
55#include "TAxis.h"
56#include "TDirectory.h"
57#include "TH1.h"
58#include "TH2.h"
59#include "TList.h"
60#include "TMath.h"
61#include "TProfile.h"
62
63#include <vector>
64#include <iomanip>
65
66////////////////////////////////////////////////////////////////////////////////
67/// constructor
68
70 : fDataSetInfo(dsi),
71 fRootBaseDir(0),
72 fCallerName (callerName),
73 fLogger ( new MsgLogger(TString("TFHandler_" + callerName).Data(), kINFO) )
74{
75 // produce one entry for each class and one entry for all classes. If there is only one class,
76 // produce only one entry
77 fNumC = (dsi.GetNClasses()<= 1) ? 1 : dsi.GetNClasses()+1;
78
79 fVariableStats.resize( fNumC );
80 for (Int_t i=0; i<fNumC; i++ ) fVariableStats.at(i).resize(dsi.GetNVariables() + dsi.GetNTargets());
81}
82
83////////////////////////////////////////////////////////////////////////////////
84/// destructor
85
87{
88 std::vector<Ranking*>::const_iterator it = fRanking.begin();
89 for (; it != fRanking.end(); ++it) delete *it;
90
91 fTransformations.SetOwner();
92 delete fLogger;
93}
94
95////////////////////////////////////////////////////////////////////////////////
96
98{
99 fCallerName = name;
100 fLogger->SetSource( TString("TFHandler_" + fCallerName).Data() );
101}
102
103////////////////////////////////////////////////////////////////////////////////
104
106{
107 TString tfname = trf->Log().GetName();
108 trf->Log().SetSource(TString(fCallerName+"_"+tfname+"_TF").Data());
109 fTransformations.Add(trf);
110 fTransformationsReferenceClasses.push_back( cls );
111 return trf;
112}
113
114////////////////////////////////////////////////////////////////////////////////
115/// Caches calculated summary statistics of transformed variables.
116///
117/// \param[in] k index of class
118/// \param[in] ivar index of variable
119/// \param[in] mean the mean value of the variable
120/// \param[in] rms the root-mean-square value of the variable
121/// \param[in] min the minimum value of the variable
122/// \param[in] max the maximum value of the variable
123
125{
126 if (rms <= 0 || TMath::IsNaN(rms)) {
127 Log() << kWARNING << "Variable \"" << Variable(ivar).GetExpression()
128 << "\" has zero, negative, or NaN RMS^2: "
129 << rms
130 << " ==> set to zero. Please check the variable content" << Endl;
131 rms = 0;
132 }
133
134 VariableStat stat; stat.fMean = mean; stat.fRMS = rms; stat.fMin = min; stat.fMax = max;
135 fVariableStats.at(k).at(ivar) = stat;
136}
137
138////////////////////////////////////////////////////////////////////////////////
139/// overrides the setting for all classes! (this is put in basically for the likelihood-method)
140/// be careful with the usage this method
141
143{
144 for (UInt_t i = 0; i < fTransformationsReferenceClasses.size(); i++) {
145 fTransformationsReferenceClasses.at( i ) = cls;
146 }
147}
148
149////////////////////////////////////////////////////////////////////////////////
150/// the transformation
151
153{
154 TListIter trIt(&fTransformations);
155 std::vector<Int_t>::const_iterator rClsIt = fTransformationsReferenceClasses.begin();
156 const Event* trEv = ev;
157 while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) {
158 if (rClsIt == fTransformationsReferenceClasses.end()) Log() << kFATAL<< "invalid read in TransformationHandler::Transform " <<Endl;
159 trEv = trf->Transform(trEv, (*rClsIt) );
160 ++rClsIt;
161 }
162 return trEv;
163}
164
165////////////////////////////////////////////////////////////////////////////////
166
167const TMVA::Event* TMVA::TransformationHandler::InverseTransform( const Event* ev, Bool_t suppressIfNoTargets ) const
168{
169 if (fTransformationsReferenceClasses.empty()){
170 //Log() << kWARNING << __FILE__ <<":InverseTransform fTransformationsReferenceClasses is empty" << Endl;
171 return ev;
172 }
173 // the inverse transformation
174 TListIter trIt(&fTransformations, kIterBackward);
175 std::vector< Int_t >::const_iterator rClsIt = fTransformationsReferenceClasses.end();
176 --rClsIt;
177 const Event* trEv = ev;
178 UInt_t nvars = 0, ntgts = 0, nspcts = 0;
179 while (VariableTransformBase *trf = (VariableTransformBase*) trIt() ) { // shouldn't be the transformation called in the inverse order for the inversetransformation?????
180 if (trf->IsCreated()) {
181 trf->CountVariableTypes( nvars, ntgts, nspcts );
182 if( !(suppressIfNoTargets && ntgts==0) )
183 trEv = trf->InverseTransform(ev, (*rClsIt) );
184 }
185 else break;
186 --rClsIt;
187 }
188 return trEv;
189
190
191 // TListIter trIt(&fTransformations);
192 // std::vector< Int_t >::const_iterator rClsIt = fTransformationsReferenceClasses.begin();
193 // const Event* trEv = ev;
194 // UInt_t nvars = 0, ntgts = 0, nspcts = 0;
195 // while (VariableTransformBase *trf = (VariableTransformBase*) trIt() ) { // shouldn't be the transformation called in the inverse order for the inversetransformation?????
196 // if (trf->IsCreated()) {
197 // trf->CountVariableTypes( nvars, ntgts, nspcts );
198 // if( !(suppressIfNoTargets && ntgts==0) )
199 // trEv = trf->InverseTransform(ev, (*rClsIt) );
200 // }
201 // else break;
202 // rClsIt++;
203 // }
204 // return trEv;
205
206}
207
208////////////////////////////////////////////////////////////////////////////////
209/// computation of transformation
210
211const std::vector<TMVA::Event*>* TMVA::TransformationHandler::CalcTransformations( const std::vector<Event*>& events,
212 Bool_t createNewVector )
213{
214 if (fTransformations.GetEntries() <= 0)
215 return &events;
216
217 // the transformedEvents are initialised with the initial events and then
218 // subsequently replaced with transformed ones. The n-th transformation will
219 // and on the events as they look like after the (n-1)-the transformation
220 // as intended for the chained transformations
221 std::vector<Event*> *transformedEvents = new std::vector<TMVA::Event*>(events.size());
222 for ( UInt_t ievt = 0; ievt<events.size(); ievt++)
223 transformedEvents->at(ievt) = new Event(*events.at(ievt));
224
225 TListIter trIt(&fTransformations);
226 std::vector< Int_t >::iterator rClsIt = fTransformationsReferenceClasses.begin();
227 while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) {
228 if (trf->PrepareTransformation(*transformedEvents)) {
229 for (UInt_t ievt = 0; ievt<transformedEvents->size(); ievt++) { // loop through all events
230 *(*transformedEvents)[ievt] = *trf->Transform((*transformedEvents)[ievt],(*rClsIt));
231 }
232 ++rClsIt;
233 }
234 }
235
236 CalcStats(*transformedEvents);
237
238 // plot the variables once in this transformation
239 PlotVariables(*transformedEvents);
240
241 //sometimes, the actual transformed event vector is not used for anything but the previous
242 //CalcStat and PlotVariables calles, in that case, we delete it again (and return NULL)
243 if (!createNewVector) { // if we don't want that newly created event vector to persist, then delete it
244 for ( UInt_t ievt = 0; ievt<transformedEvents->size(); ievt++)
245 delete (*transformedEvents)[ievt];
246 delete transformedEvents;
247 transformedEvents=NULL;
248 }
249
250 return transformedEvents; // give back the newly created event collection (containing the transformed events)
251}
252
253////////////////////////////////////////////////////////////////////////////////
254/// method to calculate minimum, maximum, mean, and RMS for all
255/// variables used in the MVA
256
257void TMVA::TransformationHandler::CalcStats (const std::vector<Event*>& events )
258{
259 UInt_t nevts = events.size();
260
261 if (nevts==0)
262 Log() << kFATAL << "No events available to find min, max, mean and rms" << Endl;
263
264 // if transformation has not been succeeded, the tree may be empty
265 const UInt_t nvar = events[0]->GetNVariables();
266 const UInt_t ntgt = events[0]->GetNTargets();
267
268 Double_t *sumOfWeights = new Double_t[fNumC];
269 Double_t* *x2 = new Double_t*[fNumC];
270 Double_t* *x0 = new Double_t*[fNumC];
271 Double_t* *varMin = new Double_t*[fNumC];
272 Double_t* *varMax = new Double_t*[fNumC];
273
274 for (Int_t cls=0; cls<fNumC; cls++) {
275 sumOfWeights[cls]=0;
276 x2[cls] = new Double_t[nvar+ntgt];
277 x0[cls] = new Double_t[nvar+ntgt];
278 varMin[cls] = new Double_t[nvar+ntgt];
279 varMax[cls] = new Double_t[nvar+ntgt];
280 for (UInt_t ivar=0; ivar<nvar+ntgt; ivar++) {
281 x0[cls][ivar] = x2[cls][ivar] = 0;
282 varMin[cls][ivar] = DBL_MAX;
283 varMax[cls][ivar] = -DBL_MAX;
284 }
285 }
286
287 for (UInt_t ievt=0; ievt<nevts; ievt++) {
288 const Event* ev = events[ievt];
289 Int_t cls = ev->GetClass();
290
291 Double_t weight = ev->GetWeight();
292 sumOfWeights[cls] += weight;
293 if (fNumC > 1 ) sumOfWeights[fNumC-1] += weight; // if more than one class, store values for all classes
294 for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++ ){ // first for variables, then for targets
295 UInt_t nloop = ( var_tgt==0?nvar:ntgt );
296 for (UInt_t ivar=0; ivar<nloop; ivar++) {
297 Double_t x = ( var_tgt==0?ev->GetValue(ivar):ev->GetTarget(ivar) );
298
299 if (x < varMin[cls][(var_tgt*nvar)+ivar]) varMin[cls][(var_tgt*nvar)+ivar]= x;
300 if (x > varMax[cls][(var_tgt*nvar)+ivar]) varMax[cls][(var_tgt*nvar)+ivar]= x;
301
302 x0[cls][(var_tgt*nvar)+ivar] += x*weight;
303 x2[cls][(var_tgt*nvar)+ivar] += x*x*weight;
304
305 if (fNumC > 1) {
306 if (x < varMin[fNumC-1][(var_tgt*nvar)+ivar]) varMin[fNumC-1][(var_tgt*nvar)+ivar]= x;
307 if (x > varMax[fNumC-1][(var_tgt*nvar)+ivar]) varMax[fNumC-1][(var_tgt*nvar)+ivar]= x;
308
309 x0[fNumC-1][(var_tgt*nvar)+ivar] += x*weight;
310 x2[fNumC-1][(var_tgt*nvar)+ivar] += x*x*weight;
311 }
312 }
313 }
314 }
315
316
317 // set Mean and RMS
318 for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++ ){ // first for variables, then for targets
319 UInt_t nloop = ( var_tgt==0?nvar:ntgt );
320 for (UInt_t ivar=0; ivar<nloop; ivar++) {
321 for (Int_t cls = 0; cls < fNumC; cls++) {
322 Double_t mean = x0[cls][(var_tgt*nvar)+ivar]/sumOfWeights[cls];
323 Double_t rms = TMath::Sqrt( x2[cls][(var_tgt*nvar)+ivar]/sumOfWeights[cls] - mean*mean);
324 AddStats(cls, (var_tgt*nvar)+ivar, mean, rms, varMin[cls][(var_tgt*nvar)+ivar], varMax[cls][(var_tgt*nvar)+ivar]);
325 }
326 }
327 }
328
329 // ------ pretty output of basic statistics -------------------------------
330 // find maximum length in V (and column title)
331 UInt_t maxL = 8, maxV = 0;
332 std::vector<UInt_t> vLengths;
333 for (UInt_t ivar=0; ivar<nvar+ntgt; ivar++) {
334 if( ivar < nvar )
335 maxL = TMath::Max( (UInt_t)Variable(ivar).GetLabel().Length(), maxL );
336 else
337 maxL = TMath::Max( (UInt_t)Target(ivar-nvar).GetLabel().Length(), maxL );
338 }
339 maxV = maxL + 2;
340 // full column length
341 UInt_t clen = maxL + 4*maxV + 11;
342 Log() << kHEADER ;
343 //for (UInt_t i=0; i<clen; i++) //Log() << "-";
344
345 //Log() << Endl;
346 // full column length
347 Log() << std::setw(maxL) << "Variable";
348 Log() << " " << std::setw(maxV) << "Mean";
349 Log() << " " << std::setw(maxV) << "RMS";
350 Log() << " " << std::setw(maxV) << "[ Min ";
351 Log() << " " << std::setw(maxV) << " Max ]"<< Endl;;
352 for (UInt_t i=0; i<clen; i++) Log() << "-";
353 Log() << Endl;
354
355 // the numbers
356 TString format = "%#11.5g";
357 for (UInt_t ivar=0; ivar<nvar+ntgt; ivar++) {
358 if( ivar < nvar )
359 Log() << std::setw(maxL) << Variable(ivar).GetLabel() << ":";
360 else
361 Log() << std::setw(maxL) << Target(ivar-nvar).GetLabel() << ":";
362 Log() << std::setw(maxV) << Form( format.Data(), GetMean(ivar) );
363 Log() << std::setw(maxV) << Form( format.Data(), GetRMS(ivar) );
364 Log() << " [" << std::setw(maxV) << Form( format.Data(), GetMin(ivar) );
365 Log() << std::setw(maxV) << Form( format.Data(), GetMax(ivar) ) << " ]";
366 Log() << Endl;
367 }
368 for (UInt_t i=0; i<clen; i++) Log() << "-";
369 Log() << Endl;
370 // ------------------------------------------------------------------------
371
372 delete[] sumOfWeights;
373 for (Int_t cls=0; cls<fNumC; cls++) {
374 delete [] x2[cls];
375 delete [] x0[cls];
376 delete [] varMin[cls];
377 delete [] varMax[cls];
378 }
379 delete [] x2;
380 delete [] x0;
381 delete [] varMin;
382 delete [] varMax;
383}
384
385////////////////////////////////////////////////////////////////////////////////
386/// create transformation function
387
388void TMVA::TransformationHandler::MakeFunction( std::ostream& fout, const TString& fncName, Int_t part ) const
389{
390 TListIter trIt(&fTransformations);
391 std::vector< Int_t >::const_iterator rClsIt = fTransformationsReferenceClasses.begin();
392 UInt_t trCounter=1;
393 while (VariableTransformBase *trf = (VariableTransformBase*) trIt() ) {
394 trf->MakeFunction(fout, fncName, part, trCounter++, (*rClsIt) );
395 ++rClsIt;
396 }
397 if (part==1) {
398 for (Int_t i=0; i<fTransformations.GetSize(); i++) {
399 fout << " void InitTransform_"<<i+1<<"();" << std::endl;
400 fout << " void Transform_"<<i+1<<"( std::vector<double> & iv, int sigOrBgd ) const;" << std::endl;
401 }
402 }
403 if (part==2) {
404 fout << std::endl;
405 fout << "//_______________________________________________________________________" << std::endl;
406 fout << "inline void " << fncName << "::InitTransform()" << std::endl;
407 fout << "{" << std::endl;
408 for (Int_t i=0; i<fTransformations.GetSize(); i++)
409 fout << " InitTransform_"<<i+1<<"();" << std::endl;
410 fout << "}" << std::endl;
411 fout << std::endl;
412 fout << "//_______________________________________________________________________" << std::endl;
413 fout << "inline void " << fncName << "::Transform( std::vector<double>& iv, int sigOrBgd ) const" << std::endl;
414 fout << "{" << std::endl;
415 for (Int_t i=0; i<fTransformations.GetSize(); i++)
416 fout << " Transform_"<<i+1<<"( iv, sigOrBgd );" << std::endl;
417
418 fout << "}" << std::endl;
419 }
420}
421
422////////////////////////////////////////////////////////////////////////////////
423/// return transformation name
424
426{
427 TString name("Id");
428 TListIter trIt(&fTransformations);
430 if ((trf = (VariableTransformBase*) trIt())) {
431 name = TString(trf->GetShortName());
432 while ((trf = (VariableTransformBase*) trIt())) name += "_" + TString(trf->GetShortName());
433 }
434 return name;
435}
436
437////////////////////////////////////////////////////////////////////////////////
438/// incorporates transformation type into title axis (usually for histograms)
439
441{
442 TString xtit = info.GetTitle();
443 // indicate transformation, but not in case of single identity transform
444 if (fTransformations.GetSize() >= 1) {
445 if (fTransformations.GetSize() > 1 ||
446 ((VariableTransformBase*)GetTransformationList().Last())->GetVariableTransform() != Types::kIdentity) {
447 xtit += " (" + GetName() + ")";
448 }
449 }
450 return xtit;
451}
452
453
454////////////////////////////////////////////////////////////////////////////////
455/// create histograms from the input variables
456/// - histograms for all input variables
457/// - scatter plots for all pairs of input variables
458
459void TMVA::TransformationHandler::PlotVariables (const std::vector<Event*>& events, TDirectory* theDirectory )
460{
461 if (fRootBaseDir==0 && theDirectory == 0) return;
462
463 Log() << kDEBUG << "Plot event variables for ";
464 if (theDirectory !=0) Log()<< TString(theDirectory->GetName()) << Endl;
465 else Log() << GetName() << Endl;
466
467 // extension for transformation type
468 TString transfType = "";
469 if (theDirectory == 0) {
470 transfType += "_";
471 transfType += GetName();
472 }else{ // you plot for the individual classifiers. Note, here the "statistics" still need to be calculated as you are in the testing phase
473 CalcStats(events);
474 }
475
476 const UInt_t nvar = fDataSetInfo.GetNVariables();
477 const UInt_t ntgt = fDataSetInfo.GetNTargets();
478 const Int_t ncls = fDataSetInfo.GetNClasses();
479
480 // Create all histograms
481 // do both, scatter and profile plots
482 std::vector<std::vector<TH1*> > hVars( ncls ); // histograms for variables
483 std::vector<std::vector<std::vector<TH2F*> > > mycorr( ncls ); // histograms for correlations
484 std::vector<std::vector<std::vector<TProfile*> > > myprof( ncls ); // histograms for profiles
485
486 for (Int_t cls = 0; cls < ncls; cls++) {
487 hVars.at(cls).resize ( nvar+ntgt );
488 hVars.at(cls).assign ( nvar+ntgt, 0 ); // fill with zeros
489 mycorr.at(cls).resize( nvar+ntgt );
490 myprof.at(cls).resize( nvar+ntgt );
491 for (UInt_t ivar=0; ivar < nvar+ntgt; ivar++) {
492 mycorr.at(cls).at(ivar).resize( nvar+ntgt );
493 myprof.at(cls).at(ivar).resize( nvar+ntgt );
494 mycorr.at(cls).at(ivar).assign( nvar+ntgt, 0 ); // fill with zeros
495 myprof.at(cls).at(ivar).assign( nvar+ntgt, 0 ); // fill with zeros
496 }
497 }
498
499 // if there are too many input variables, the creation of correlations plots blows up
500 // memory and basically kills the TMVA execution
501 // --> avoid above critical number (which can be user defined)
502 if (nvar+ntgt > (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) {
503 Int_t nhists = (nvar+ntgt)*(nvar+ntgt - 1)/2;
504 Log() << kINFO << gTools().Color("dgreen") << Endl;
505 Log() << kINFO << "<PlotVariables> Will not produce scatter plots ==> " << Endl;
506 Log() << kINFO
507 << "| The number of " << nvar << " input variables and " << ntgt << " target values would require "
508 << nhists << " two-dimensional" << Endl;
509 Log() << kINFO
510 << "| histograms, which would occupy the computer's memory. Note that this" << Endl;
511 Log() << kINFO
512 << "| suppression does not have any consequences for your analysis, other" << Endl;
513 Log() << kINFO
514 << "| than not disposing of these scatter plots. You can modify the maximum" << Endl;
515 Log() << kINFO
516 << "| number of input variables allowed to generate scatter plots in your" << Endl;
517 Log() << "| script via the command line:" << Endl;
518 Log() << kINFO
519 << "| \"(TMVA::gConfig().GetVariablePlotting()).fMaxNumOfAllowedVariablesForScatterPlots = <some int>;\""
520 << gTools().Color("reset") << Endl;
521 Log() << Endl;
522 Log() << kINFO << "Some more output" << Endl;
523 }
524
528
529 for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++) { // create the histos first for the variables, then for the targets
530 UInt_t nloops = ( var_tgt == 0? nvar:ntgt ); // number of variables or number of targets
531 for (UInt_t ivar=0; ivar<nloops; ivar++) {
532 const VariableInfo& info = ( var_tgt == 0 ? Variable( ivar ) : Target(ivar) ); // choose the appropriate one (variable or target)
533 TString myVari = info.GetInternalName();
534
535 Double_t mean = fVariableStats.at(fNumC-1).at( ( var_tgt*nvar )+ivar).fMean;
536 Double_t rms = fVariableStats.at(fNumC-1).at( ( var_tgt*nvar )+ivar).fRMS;
537
538 for (Int_t cls = 0; cls < ncls; cls++) {
539
540 TString className = fDataSetInfo.GetClassInfo(cls)->GetName();
541
542 // add "target" in case of target variable (required for plotting macros)
543 className += (ntgt == 1 && var_tgt == 1 ? "_target" : "");
544
545 // choose reasonable histogram ranges, by removing outliers
546 TH1* h = 0;
547 if (info.GetVarType() == 'I') {
548 // special treatment for integer variables
549 Int_t xmin = TMath::Nint( GetMin( ( var_tgt*nvar )+ivar) );
550 Int_t xmax = TMath::Nint( GetMax( ( var_tgt*nvar )+ivar) + 1 );
551 Int_t nbins = xmax - xmin;
552
553 h = new TH1F( Form("%s__%s%s", myVari.Data(), className.Data(), transfType.Data()),
554 info.GetTitle(), nbins, xmin, xmax );
555 }
556 else {
557 Double_t xmin = TMath::Max( GetMin( ( var_tgt*nvar )+ivar), mean - timesRMS*rms );
558 Double_t xmax = TMath::Min( GetMax( ( var_tgt*nvar )+ivar), mean + timesRMS*rms );
559
560 //std::cout << "Class="<<cls<<" xmin="<<xmin << " xmax="<<xmax<<" mean="<<mean<<" rms="<<rms<<" timesRMS="<<timesRMS<<std::endl;
561 // protection
562 if (xmin >= xmax) xmax = xmin*1.1; // try first...
563 if (xmin >= xmax) xmax = xmin + 1; // this if xmin == xmax == 0
564 // safety margin for values equal to the maximum within the histogram
565 xmax += (xmax - xmin)/nbins1D;
566
567 h = new TH1F( Form("%s__%s%s", myVari.Data(), className.Data(), transfType.Data()),
568 info.GetTitle(), nbins1D, xmin, xmax );
569 }
570
571 h->GetXaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( info ), info.GetUnit() ) );
572 h->GetYaxis()->SetTitle( gTools().GetYTitleWithUnit( *h, info.GetUnit(), kFALSE ) );
573 hVars.at(cls).at((var_tgt*nvar)+ivar) = h;
574
575 // profile and scatter plots
576 if (nvar+ntgt <= (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) {
577
578 for (UInt_t v_t = 0; v_t < 2; v_t++) {
579 UInt_t nl = ( v_t==0?nvar:ntgt );
580 UInt_t start = ( v_t==0? (var_tgt==0?ivar+1:0):(var_tgt==0?nl:ivar+1) );
581 for (UInt_t j=start; j<nl; j++) {
582 // choose the appropriate one (variable or target)
583 const VariableInfo& infoj = ( v_t == 0 ? Variable( j ) : Target(j) );
584 TString myVarj = infoj.GetInternalName();
585
586 Double_t rxmin = fVariableStats.at(fNumC-1).at( ( v_t*nvar )+ivar).fMin;
587 Double_t rxmax = fVariableStats.at(fNumC-1).at( ( v_t*nvar )+ivar).fMax;
588 Double_t rymin = fVariableStats.at(fNumC-1).at( ( v_t*nvar )+j).fMin;
589 Double_t rymax = fVariableStats.at(fNumC-1).at( ( v_t*nvar )+j).fMax;
590
591 // scatter plot
592 TH2F* h2 = new TH2F( Form( "scat_%s_vs_%s_%s%s" , myVarj.Data(), myVari.Data(),
593 className.Data(), transfType.Data() ),
594 Form( "%s versus %s (%s)%s", infoj.GetTitle(), info.GetTitle(),
595 className.Data(), transfType.Data() ),
596 nbins2D, rxmin , rxmax,
597 nbins2D, rymin , rymax );
598
599 h2->GetXaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( info ), info .GetUnit() ) );
600 h2->GetYaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( infoj ), infoj.GetUnit() ) );
601 mycorr.at(cls).at((var_tgt*nvar)+ivar).at((v_t*nvar)+j) = h2;
602
603 // profile plot
604 TProfile* p = new TProfile( Form( "prof_%s_vs_%s_%s%s", myVarj.Data(),
605 myVari.Data(), className.Data(),
606 transfType.Data() ),
607 Form( "profile %s versus %s (%s)%s",
608 infoj.GetTitle(), info.GetTitle(),
609 className.Data(), transfType.Data() ), nbins1D,
610 rxmin, rxmax );
611 // info.GetMin(), info.GetMax() );
612
613 p->GetXaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( info ), info .GetUnit() ) );
614 p->GetYaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( infoj ), infoj.GetUnit() ) );
615 myprof.at(cls).at((var_tgt*nvar)+ivar).at((v_t*nvar)+j) = p;
616 }
617 }
618 }
619 }
620 }
621 }
622
623 UInt_t nevts = events.size();
624
625 // compute correlation coefficient between target value and variables (regression only)
626 std::vector<Double_t> xregmean ( nvar+1, 0 );
627 std::vector<Double_t> x2regmean( nvar+1, 0 );
628 std::vector<Double_t> xCregmean( nvar+1, 0 );
629
630 // fill the histograms (this approach should be faster than individual projection
631 for (UInt_t ievt=0; ievt<nevts; ievt++) {
632
633 const Event* ev = events[ievt];
634
635 Float_t weight = ev->GetWeight();
636 Int_t cls = ev->GetClass();
637
638 // average correlation between first target and variables (so far only for single-target regression)
639 if (ntgt == 1) {
640 Float_t valr = ev->GetTarget(0);
641 xregmean[nvar] += valr;
642 x2regmean[nvar] += valr*valr;
643 for (UInt_t ivar=0; ivar<nvar; ivar++) {
644 Float_t vali = ev->GetValue(ivar);
645 xregmean[ivar] += vali;
646 x2regmean[ivar] += vali*vali;
647 xCregmean[ivar] += vali*valr;
648 }
649 }
650
651 // fill correlation histograms
652 for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++) { // create the histos first for the variables, then for the targets
653 UInt_t nloops = ( var_tgt == 0? nvar:ntgt ); // number of variables or number of targets
654 for (UInt_t ivar=0; ivar<nloops; ivar++) {
655 Float_t vali = ( var_tgt == 0 ? ev->GetValue(ivar) : ev->GetTarget(ivar) );
656
657 // variable histos
658 hVars.at(cls).at( ( var_tgt*nvar )+ivar)->Fill( vali, weight );
659
660 // correlation histos
662
663 for (UInt_t v_t = 0; v_t < 2; v_t++) {
664 UInt_t nl = ( v_t==0 ? nvar : ntgt );
665 UInt_t start = ( v_t==0 ? (var_tgt==0?ivar+1:0) : (var_tgt==0?nl:ivar+1) );
666 for (UInt_t j=start; j<nl; j++) {
667 Float_t valj = ( v_t == 0 ? ev->GetValue(j) : ev->GetTarget(j) );
668 mycorr.at(cls).at( ( var_tgt*nvar )+ivar).at( ( v_t*nvar )+j)->Fill( vali, valj, weight );
669 myprof.at(cls).at( ( var_tgt*nvar )+ivar).at( ( v_t*nvar )+j)->Fill( vali, valj, weight );
670 }
671 }
672 }
673 }
674 }
675 }
676
677 // correlation analysis for ranking (single-target regression only)
678 if (ntgt == 1) {
679 for (UInt_t ivar=0; ivar<=nvar; ivar++) {
680 xregmean[ivar] /= nevts;
681 x2regmean[ivar] = x2regmean[ivar]/nevts - xregmean[ivar]*xregmean[ivar];
682 }
683 for (UInt_t ivar=0; ivar<nvar; ivar++) {
684 xCregmean[ivar] = xCregmean[ivar]/nevts - xregmean[ivar]*xregmean[nvar];
685 xCregmean[ivar] /= TMath::Sqrt( x2regmean[ivar]*x2regmean[nvar] );
686 }
687
688 fRanking.push_back( new Ranking( GetName() + "Transformation", "|Correlation with target|" ) );
689 for (UInt_t ivar=0; ivar<nvar; ivar++) {
690 Double_t abscor = TMath::Abs( xCregmean[ivar] );
691 fRanking.back()->AddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), abscor ) );
692 }
693
694 if (nvar+ntgt <= (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) {
695
696 // compute also mutual information (non-linear correlation measure)
697 fRanking.push_back( new Ranking( GetName() + "Transformation", "Mutual information" ) );
698 for (UInt_t ivar=0; ivar<nvar; ivar++) {
699 TH2F* h1 = mycorr.at(0).at( nvar ).at( ivar );
701 fRanking.back()->AddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), mi ) );
702 }
703
704 // compute correlation ratio (functional correlations measure)
705 fRanking.push_back( new Ranking( GetName() + "Transformation", "Correlation Ratio" ) );
706 for (UInt_t ivar=0; ivar<nvar; ivar++) {
707 TH2F* h2 = mycorr.at(0).at( nvar ).at( ivar );
708 Double_t cr = gTools().GetCorrelationRatio( *h2 );
709 fRanking.back()->AddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), cr ) );
710 }
711
712 // additionally compute correlation ratio from transposed histograms since correlation ratio is asymmetric
713 fRanking.push_back( new Ranking( GetName() + "Transformation", "Correlation Ratio (T)" ) );
714 for (UInt_t ivar=0; ivar<nvar; ivar++) {
715 TH2F* h2T = gTools().TransposeHist( *mycorr.at(0).at( nvar ).at( ivar ) );
716 Double_t cr = gTools().GetCorrelationRatio( *h2T );
717 fRanking.back()->AddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), cr ) );
718 delete h2T;
719 }
720 }
721 }
722 // computes ranking of input variables
723 // separation for 2-class classification
724 else if (fDataSetInfo.GetNClasses() == 2
725 && fDataSetInfo.GetClassInfo("Signal") != NULL
726 && fDataSetInfo.GetClassInfo("Background") != NULL
727 ) { // TODO: ugly hack.. adapt to new framework
728 fRanking.push_back( new Ranking( GetName() + "Transformation", "Separation" ) );
729 for (UInt_t i=0; i<nvar; i++) {
730 Double_t sep = gTools().GetSeparation( hVars.at(fDataSetInfo.GetClassInfo("Signal") ->GetNumber()).at(i),
731 hVars.at(fDataSetInfo.GetClassInfo("Background")->GetNumber()).at(i) );
732 fRanking.back()->AddRank( Rank( hVars.at(fDataSetInfo.GetClassInfo("Signal")->GetNumber()).at(i)->GetTitle(),
733 sep ) );
734 }
735 }
736
737 // for regression compute performance from correlation with target value
738
739 // write histograms
740
741 TDirectory* localDir = theDirectory;
742 if (theDirectory == 0) {
743 // create directory in root dir
744 fRootBaseDir->cd();
745 TString outputDir = TString("InputVariables");
746 TListIter trIt(&fTransformations);
747 while (VariableTransformBase *trf = (VariableTransformBase*) trIt())
748 outputDir += "_" + TString(trf->GetShortName());
749
750 TString uniqueOutputDir = outputDir;
751 Int_t counter = 0;
752 TObject* o = NULL;
753 while( (o = fRootBaseDir->FindObject(uniqueOutputDir)) != 0 ){
754 uniqueOutputDir = outputDir+Form("_%d",counter);
755 Log() << kINFO << "A " << o->ClassName() << " with name " << o->GetName() << " already exists in "
756 << fRootBaseDir->GetPath() << ", I will try with "<<uniqueOutputDir<<"." << Endl;
757 ++counter;
758 }
759
760 // TObject* o = fRootBaseDir->FindObject(outputDir);
761 // if (o != 0) {
762 // Log() << kFATAL << "A " << o->ClassName() << " with name " << o->GetName() << " already exists in "
763 // << fRootBaseDir->GetPath() << "("<<outputDir<<")" << Endl;
764 // }
765 localDir = fRootBaseDir->mkdir( uniqueOutputDir );
766 localDir->cd();
767
768 Log() << kVERBOSE << "Create and switch to directory " << localDir->GetPath() << Endl;
769 }
770 else {
771 theDirectory->cd();
772 }
773
774 for (UInt_t i=0; i<nvar+ntgt; i++) {
775 for (Int_t cls = 0; cls < ncls; cls++) {
776 if (hVars.at(cls).at(i) != 0) {
777 hVars.at(cls).at(i)->Write();
778 hVars.at(cls).at(i)->SetDirectory(0);
779 delete hVars.at(cls).at(i);
780 }
781 }
782 }
783
784 // correlation plots have dedicated directory
785 if (nvar+ntgt <= (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) {
786
787 localDir = localDir->mkdir( "CorrelationPlots" );
788 localDir ->cd();
789 Log() << kDEBUG << "Create scatter and profile plots in target-file directory: " << Endl;
790 Log() << kDEBUG << localDir->GetPath() << Endl;
791
792
793 for (UInt_t i=0; i<nvar+ntgt; i++) {
794 for (UInt_t j=i+1; j<nvar+ntgt; j++) {
795 for (Int_t cls = 0; cls < ncls; cls++) {
796 if (mycorr.at(cls).at(i).at(j) != 0 ) {
797 mycorr.at(cls).at(i).at(j)->Write();
798 mycorr.at(cls).at(i).at(j)->SetDirectory(0);
799 delete mycorr.at(cls).at(i).at(j);
800 }
801 if (myprof.at(cls).at(i).at(j) != 0) {
802 myprof.at(cls).at(i).at(j)->Write();
803 myprof.at(cls).at(i).at(j)->SetDirectory(0);
804 delete myprof.at(cls).at(i).at(j);
805 }
806 }
807 }
808 }
809 }
810 if (theDirectory != 0 ) theDirectory->cd();
811 else fRootBaseDir->cd();
812}
813
814////////////////////////////////////////////////////////////////////////////////
815/// returns string for transformation
816
818{
819 VariableTransformBase* trf = ((VariableTransformBase*)GetTransformationList().Last());
820 if (!trf) return 0;
821 else return trf->GetTransformationStrings( fTransformationsReferenceClasses.back() );
822}
823
824////////////////////////////////////////////////////////////////////////////////
825/// returns string for transformation
826
828{
829 VariableTransformBase* trf = ((VariableTransformBase*)GetTransformationList().Last());
830 if (!trf) return 0;
831 else return trf->GetName();
832}
833
834////////////////////////////////////////////////////////////////////////////////
835/// write transformation to stream
836
838{
839 TListIter trIt(&fTransformations);
840 std::vector< Int_t >::const_iterator rClsIt = fTransformationsReferenceClasses.begin();
841
842 o << "NTransformtations " << fTransformations.GetSize() << std::endl << std::endl;
843
844 ClassInfo* ci;
845 UInt_t i = 1;
846 while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) {
847 o << "#TR -*-*-*-*-*-*-* transformation " << i++ << ": " << trf->GetName() << " -*-*-*-*-*-*-*-" << std::endl;
848 trf->WriteTransformationToStream(o);
849 ci = fDataSetInfo.GetClassInfo( (*rClsIt) );
850 TString clsName;
851 if (ci == 0 ) clsName = "AllClasses";
852 else clsName = ci->GetName();
853 o << "ReferenceClass " << clsName << std::endl;
854 ++rClsIt;
855 }
856}
857
858
859////////////////////////////////////////////////////////////////////////////////
860/// XML node describing the transformation
861
863{
864 if(!parent) return;
865 void* trfs = gTools().AddChild(parent, "Transformations");
866 gTools().AddAttr( trfs, "NTransformations", fTransformations.GetSize() );
867 TListIter trIt(&fTransformations);
868 while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) trf->AttachXMLTo(trfs);
869}
870
871////////////////////////////////////////////////////////////////////////////////
872
874{
875 Log() << kFATAL << "Read transformations not implemented" << Endl;
876 // TODO
877}
878
879////////////////////////////////////////////////////////////////////////////////
880
882{
883 void* ch = gTools().GetChild( trfsnode );
884 while(ch) {
885 Int_t idxCls = -1;
886 TString trfname;
887 gTools().ReadAttr(ch, "Name", trfname);
888
889 VariableTransformBase* newtrf = 0;
890
891 if (trfname == "Decorrelation" ) {
892 newtrf = new VariableDecorrTransform(fDataSetInfo);
893 }
894 else if (trfname == "PCA" ) {
895 newtrf = new VariablePCATransform(fDataSetInfo);
896 }
897 else if (trfname == "Gauss" ) {
898 newtrf = new VariableGaussTransform(fDataSetInfo);
899 }
900 else if (trfname == "Uniform" ) {
901 newtrf = new VariableGaussTransform(fDataSetInfo, "Uniform");
902 }
903 else if (trfname == "Normalize" ) {
904 newtrf = new VariableNormalizeTransform(fDataSetInfo);
905 }
906 else if (trfname == "Rearrange" ) {
907 newtrf = new VariableRearrangeTransform(fDataSetInfo);
908 }
909 else if (trfname != "None") {
910 }
911 else {
912 Log() << kFATAL << "<ReadFromXML> Variable transform '"
913 << trfname << "' unknown." << Endl;
914 }
915 newtrf->ReadFromXML( ch );
916 AddTransformation( newtrf, idxCls );
917 ch = gTools().GetNextChild(ch);
918 }
919}
920
921////////////////////////////////////////////////////////////////////////////////
922/// prints ranking of input variables
923
925{
926 //Log() << kINFO << " " << Endl;
927 Log() << kINFO << "Ranking input variables (method unspecific)..." << Endl;
928 std::vector<Ranking*>::const_iterator it = fRanking.begin();
929 for (; it != fRanking.end(); ++it) (*it)->Print();
930}
931
932////////////////////////////////////////////////////////////////////////////////
933
935{
936 try {
937 return fVariableStats.at(cls).at(ivar).fMean;
938 }
939 catch(...) {
940 try {
941 return fVariableStats.at(fNumC-1).at(ivar).fMean;
942 }
943 catch(...) {
944 Log() << kWARNING << "Inconsistent variable state when reading the mean value. " << Endl;
945 }
946 }
947 Log() << kWARNING << "Inconsistent variable state when reading the mean value. Value 0 given back" << Endl;
948 return 0;
949}
950
951////////////////////////////////////////////////////////////////////////////////
952
954{
955 try {
956 return fVariableStats.at(cls).at(ivar).fRMS;
957 }
958 catch(...) {
959 try {
960 return fVariableStats.at(fNumC-1).at(ivar).fRMS;
961 }
962 catch(...) {
963 Log() << kWARNING << "Inconsistent variable state when reading the RMS value. " << Endl;
964 }
965 }
966 Log() << kWARNING << "Inconsistent variable state when reading the RMS value. Value 0 given back" << Endl;
967 return 0;
968}
969
970////////////////////////////////////////////////////////////////////////////////
971
973{
974 try {
975 return fVariableStats.at(cls).at(ivar).fMin;
976 }
977 catch(...) {
978 try {
979 return fVariableStats.at(fNumC-1).at(ivar).fMin;
980 }
981 catch(...) {
982 Log() << kWARNING << "Inconsistent variable state when reading the minimum value. " << Endl;
983 }
984 }
985 Log() << kWARNING << "Inconsistent variable state when reading the minimum value. Value 0 given back" << Endl;
986 return 0;
987}
988
989////////////////////////////////////////////////////////////////////////////////
990
992{
993 try {
994 return fVariableStats.at(cls).at(ivar).fMax;
995 }
996 catch(...) {
997 try {
998 return fVariableStats.at(fNumC-1).at(ivar).fMax;
999 }
1000 catch(...) {
1001 Log() << kWARNING << "Inconsistent variable state when reading the maximum value. " << Endl;
1002 }
1003 }
1004 Log() << kWARNING << "Inconsistent variable state when reading the maximum value. Value 0 given back" << Endl;
1005 return 0;
1006}
#define h(i)
Definition RSha256.hxx:106
static const double x2[5]
const Bool_t kFALSE
Definition RtypesCore.h:101
double Double_t
Definition RtypesCore.h:59
float Float_t
Definition RtypesCore.h:57
const Bool_t kIterBackward
Definition TCollection.h:43
char name[80]
Definition TGX11.cxx:110
float xmin
float xmax
char * Form(const char *fmt,...)
Describe directory structure in memory.
Definition TDirectory.h:45
virtual const char * GetPath() const
Returns the full path of the directory.
virtual Bool_t cd()
Change current directory to "this" directory.
virtual TDirectory * mkdir(const char *name, const char *title="", Bool_t returnExistingDirectory=kFALSE)
Create a sub-directory "a" or a hierarchy of sub-directories "a/b/c/...".
1-D histogram with a float per channel (see TH1 documentation)}
Definition TH1.h:575
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:58
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
Definition TH1.h:320
TAxis * GetYaxis()
Definition TH1.h:321
2-D histogram with a float per channel (see TH1 documentation)}
Definition TH2.h:251
Iterator of linked list.
Definition TList.h:191
Class that contains all the information of a class.
Definition ClassInfo.h:49
Int_t fMaxNumOfAllowedVariablesForScatterPlots
Definition Config.h:109
VariablePlotting & GetVariablePlotting()
Definition Config.h:97
Class that contains all the data information.
Definition DataSetInfo.h:62
UInt_t GetNVariables() const
UInt_t GetNClasses() const
UInt_t GetNTargets() const
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
Definition Event.cxx:236
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not.
Definition Event.cxx:389
UInt_t GetClass() const
Definition Event.h:86
Float_t GetTarget(UInt_t itgt) const
Definition Event.h:102
ostringstream derivative to redirect and format output
Definition MsgLogger.h:57
void SetSource(const std::string &source)
Definition MsgLogger.h:68
Ranking for variables in method (implementation)
Definition Ranking.h:48
void * GetNextChild(void *prevchild, const char *childname=0)
XML helpers.
Definition Tools.cxx:1162
Double_t GetSeparation(TH1 *S, TH1 *B) const
compute "separation" defined as
Definition Tools.cxx:121
void * AddChild(void *parent, const char *childname, const char *content=0, bool isRootNode=false)
add child node
Definition Tools.cxx:1124
Double_t GetMutualInformation(const TH2F &)
Mutual Information method for non-linear correlations estimates in 2D histogram Author: Moritz Backes...
Definition Tools.cxx:589
const TString & Color(const TString &)
human readable color strings
Definition Tools.cxx:828
void * GetChild(void *parent, const char *childname=0)
get child node
Definition Tools.cxx:1150
Double_t GetCorrelationRatio(const TH2F &)
Compute Correlation Ratio of 2D histogram to estimate functional dependency between two variables Aut...
Definition Tools.cxx:620
void ReadAttr(void *node, const char *, T &value)
read attribute from xml
Definition Tools.h:329
void AddAttr(void *node, const char *, const T &value, Int_t precision=16)
add attribute to xml
Definition Tools.h:347
TH2F * TransposeHist(const TH2F &)
Transpose quadratic histogram.
Definition Tools.cxx:657
void AddXMLTo(void *parent=0) const
XML node describing the transformation.
const char * GetNameOfLastTransform() const
returns string for transformation
void PlotVariables(const std::vector< Event * > &events, TDirectory *theDirectory=0)
create histograms from the input variables
void ReadFromStream(std::istream &istr)
TransformationHandler(DataSetInfo &, const TString &callerName)
constructor
const std::vector< Event * > * CalcTransformations(const std::vector< Event * > &, Bool_t createNewVector=kFALSE)
computation of transformation
const Event * Transform(const Event *) const
the transformation
void AddStats(Int_t k, UInt_t ivar, Double_t mean, Double_t rms, Double_t min, Double_t max)
Caches calculated summary statistics of transformed variables.
Double_t GetRMS(Int_t ivar, Int_t cls=-1) const
Double_t GetMean(Int_t ivar, Int_t cls=-1) const
void SetCallerName(const TString &name)
std::vector< std::vector< TMVA::TransformationHandler::VariableStat > > fVariableStats
reference classes for the transformations
TString GetName() const
return transformation name
Double_t GetMin(Int_t ivar, Int_t cls=-1) const
void PrintVariableRanking() const
prints ranking of input variables
void MakeFunction(std::ostream &fout, const TString &fncName, Int_t part) const
create transformation function
void SetTransformationReferenceClass(Int_t cls)
overrides the setting for all classes! (this is put in basically for the likelihood-method) be carefu...
void CalcStats(const std::vector< Event * > &events)
method to calculate minimum, maximum, mean, and RMS for all variables used in the MVA
std::vector< TString > * GetTransformationStringsOfLastTransform() const
returns string for transformation
TString GetVariableAxisTitle(const VariableInfo &info) const
incorporates transformation type into title axis (usually for histograms)
VariableTransformBase * AddTransformation(VariableTransformBase *, Int_t cls)
Double_t GetMax(Int_t ivar, Int_t cls=-1) const
const Event * InverseTransform(const Event *, Bool_t suppressIfNoTargets=true) const
void WriteToStream(std::ostream &o) const
write transformation to stream
@ kIdentity
Definition Types.h:115
Linear interpolation class.
Gaussian Transformation of input variables.
Class for type info of MVA input variable.
char GetVarType() const
const TString & GetInternalName() const
const TString & GetUnit() const
Linear interpolation class.
Rearrangement of input variables.
Linear interpolation class.
virtual void ReadFromXML(void *trfnode)=0
Read the input variables from the XML node.
virtual const char * GetName() const
Returns name of object.
virtual std::vector< TString > * GetTransformationStrings(Int_t cls) const
TODO --> adapt to variable,target,spectator selection default transformation output --> only indicate...
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:164
virtual const char * GetTitle() const
Returns title of object.
Definition TNamed.h:48
virtual const char * GetName() const
Returns name of object.
Definition TNamed.h:47
Mother of all ROOT objects.
Definition TObject.h:41
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
Definition TObject.cxx:868
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:429
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:200
virtual TObject * FindObject(const char *name) const
Must be redefined in derived classes.
Definition TObject.cxx:393
virtual void Print(Option_t *option="") const
This method must be overridden when a class wants to print itself.
Definition TObject.cxx:622
Profile Histogram.
Definition TProfile.h:32
Basic string class.
Definition TString.h:136
const char * Data() const
Definition TString.h:369
Double_t x[n]
Definition legend1.C:17
TH1F * h1
Definition legend1.C:5
Config & gConfig()
Tools & gTools()
MsgLogger & Endl(MsgLogger &ml)
Definition MsgLogger.h:148
Bool_t IsNaN(Double_t x)
Definition TMath.h:842
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Definition TMath.h:663
Short_t Max(Short_t a, Short_t b)
Definition TMathBase.h:208
Double_t Sqrt(Double_t x)
Definition TMath.h:641
Short_t Min(Short_t a, Short_t b)
Definition TMathBase.h:176
Short_t Abs(Short_t d)
Definition TMathBase.h:120