Test program for the class TUnfoldSys.
Simple toy tests of the TUnfold package
Pseudo data (5000 events) are unfolded into three components The unfolding is performed once without and once with area constraint
Ideally, the pulls may show that the result is biased if no constraint is applied. This is expected because the true data errors are not known, and instead the sqrt(data) errors are used.
TUnfold version is V17.6
toy iteration: 0
toy iteration: 10
toy iteration: 20
toy iteration: 30
toy iteration: 40
toy iteration: 50
toy iteration: 60
toy iteration: 70
toy iteration: 80
toy iteration: 90
toy iteration: 100
toy iteration: 110
toy iteration: 120
toy iteration: 130
toy iteration: 140
toy iteration: 150
toy iteration: 160
toy iteration: 170
toy iteration: 180
toy iteration: 190
toy iteration: 200
toy iteration: 210
toy iteration: 220
toy iteration: 230
toy iteration: 240
toy iteration: 250
toy iteration: 260
toy iteration: 270
toy iteration: 280
toy iteration: 290
toy iteration: 300
toy iteration: 310
toy iteration: 320
toy iteration: 330
toy iteration: 340
toy iteration: 350
toy iteration: 360
toy iteration: 370
toy iteration: 380
toy iteration: 390
toy iteration: 400
toy iteration: 410
toy iteration: 420
toy iteration: 430
toy iteration: 440
toy iteration: 450
toy iteration: 460
toy iteration: 470
toy iteration: 480
toy iteration: 490
toy iteration: 500
toy iteration: 510
toy iteration: 520
toy iteration: 530
toy iteration: 540
toy iteration: 550
toy iteration: 560
toy iteration: 570
toy iteration: 580
toy iteration: 590
toy iteration: 600
toy iteration: 610
toy iteration: 620
toy iteration: 630
toy iteration: 640
toy iteration: 650
toy iteration: 660
toy iteration: 670
toy iteration: 680
toy iteration: 690
toy iteration: 700
toy iteration: 710
toy iteration: 720
toy iteration: 730
toy iteration: 740
toy iteration: 750
toy iteration: 760
toy iteration: 770
toy iteration: 780
toy iteration: 790
toy iteration: 800
toy iteration: 810
toy iteration: 820
toy iteration: 830
toy iteration: 840
toy iteration: 850
toy iteration: 860
toy iteration: 870
toy iteration: 880
toy iteration: 890
toy iteration: 900
toy iteration: 910
toy iteration: 920
toy iteration: 930
toy iteration: 940
toy iteration: 950
toy iteration: 960
toy iteration: 970
toy iteration: 980
toy iteration: 990
FCN=17.3145 FROM MIGRAD STATUS=CONVERGED 59 CALLS 60 TOTAL
EDM=1.33067e-10 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 1.53639e+02 6.05704e+00 1.02575e-02 3.01728e-06
2 Mean -1.21390e-01 3.38684e-02 6.92568e-05 -1.72950e-05
3 Sigma 1.02094e+00 2.43696e-02 1.33049e-05 2.18204e-03
FCN=8.19808 FROM MIGRAD STATUS=CONVERGED 59 CALLS 60 TOTAL
EDM=6.85034e-10 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 1.49698e+02 5.79213e+00 7.06055e-03 3.51186e-06
2 Mean -2.59551e-01 3.46939e-02 5.10123e-05 1.03983e-04
3 Sigma 1.05666e+00 2.43573e-02 9.38061e-06 5.79231e-03
FCN=59.2962 FROM MIGRAD STATUS=CONVERGED 60 CALLS 61 TOTAL
EDM=7.24941e-07 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 1.27750e+02 5.41128e+00 1.64364e-02 -2.21211e-04
2 Mean -4.82115e-01 4.90259e-02 1.46715e-04 -1.83701e-02
3 Sigma 1.09744e+00 3.08576e-02 2.35052e-05 -1.11293e-01
FCN=24.0114 FROM MIGRAD STATUS=CONVERGED 59 CALLS 60 TOTAL
EDM=2.61633e-10 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 1.47374e+02 5.80099e+00 1.15432e-02 -2.73138e-06
2 Mean 1.89896e-01 3.51550e-02 8.46764e-05 2.01949e-04
3 Sigma 1.05773e+00 2.51629e-02 1.57038e-05 -3.21527e-03
FCN=17.3474 FROM MIGRAD STATUS=CONVERGED 59 CALLS 60 TOTAL
EDM=3.1205e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 1.49983e+02 5.77488e+00 1.00379e-02 -3.84601e-05
2 Mean 2.01446e-01 3.42777e-02 7.12868e-05 3.82112e-03
3 Sigma 1.04383e+00 2.32937e-02 1.28346e-05 -3.31497e-02
FCN=66.0535 FROM MIGRAD STATUS=CONVERGED 69 CALLS 70 TOTAL
EDM=1.81967e-10 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 1.24001e+02 5.38113e+00 1.68582e-02 3.09845e-06
2 Mean -4.12797e-01 4.98370e-02 1.59404e-04 -2.92080e-04
3 Sigma 1.12618e+00 3.36751e-02 2.62795e-05 -5.54243e-04
using namespace std;
while((
r<nmax)&&(
f>=probability[
r])) {
}
}
r=rnd->
Gaus(shapeParm[1],shapeParm[2]);
} else {
r=rnd->
Rndm()*(shapeParm[4]-shapeParm[3])+shapeParm[3];
}
}
void testUnfold4(bool printInfo = false)
{
static const Double_t genFrac[]={0.3,0.6,0.1};
{{1.0,2.0,1.5,0.,15.},
{1.0,7.0,2.5,0.,15.},
{0.0,0.0,0.0,0.,15.}};
TH1D *histDetDATA=
new TH1D(
"Yrec",
";DATA(Yrec)",nDet,xminDet,xmaxDet);
TH2D *histGenDetMC=
new TH2D(
"Yrec%Xgen",
"MC(Xgen,Yrec)",
nGen,xminGen,xmaxGen,nDet,xminDet,xmaxDet);
TH1D *histUnfold=
new TH1D(
"Xgen",
";DATA(Xgen)",nGen,xminGen,xmaxGen);
for(int i=0;i<nGen;i++) {
}
for(int itoy=0;itoy<1000;itoy++) {
if(!(itoy %10)) cout<<"toy iteration: "<<itoy<<"\n";
for(
Int_t i=0;i<nData;i++) {
Int_t iGen=GenerateGenEvent(nGen,genFrac);
Double_t yObs=GenerateRecEvent(genShape[iGen]);
}
for(
Int_t i=0;i<nMC;i++) {
Int_t iGen=GenerateGenEvent(nGen,genFrac);
Double_t yObs=GenerateRecEvent(genShape[iGen]);
histGenDetMC->
Fill(iGen,yObs);
}
unfold.SetInput(histDetDATA,0.0,1.0);
unfold.ScanLcurve(50,0.,0.,0,0,0);
unfold.GetOutput(histUnfold);
for(int i=0;i<nGen;i++) {
}
unfold.ScanLcurve(50,0.,0.,0,0,0);
unfold.GetOutput(histUnfold);
for(int i=0;i<nGen;i++) {
}
}
for(int i=0;i<nGen;i++) {
histPullNC[i]->
Fit(
"gaus");
}
for(int i=0;i<nGen;i++) {
histPullArea[i]->
Fit(
"gaus");
}
output.SaveAs(
"testUnfold4.ps");
}
R__EXTERN Int_t gErrorIgnoreLevel
R__EXTERN TStyle * gStyle
1-D histogram with a double per channel (see TH1 documentation)}
virtual void Reset(Option_t *option="")
Reset.
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
virtual void Draw(Option_t *option="")
Draw this histogram with options.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
2-D histogram with a double per channel (see TH1 documentation)}
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Int_t Fill(Double_t)
Invalid Fill method.
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
Random number generator class based on M.
This is the base class for the ROOT Random number generators.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
virtual Double_t Rndm()
Machine independent random number generator.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
An algorithm to unfold distributions from detector to truth level, with background subtraction and pr...
static const char * GetTUnfoldVersion(void)
Return a string describing the TUnfold version.
@ kEConstraintArea
enforce preservation of the area
@ kEConstraintNone
use no extra constraint
@ kRegModeSize
regularise the amplitude of the output distribution
@ kHistMapOutputHoriz
truth level on x-axis of the response matrix
static void output(int code)
Version 17.6, in parallel to changes in TUnfold
History:
- Version 17.5, in parallel to changes in TUnfold
- Version 17.4, in parallel to changes in TUnfold
- Version 17.3, in parallel to changes in TUnfold
- Version 17.2, in parallel to changes in TUnfold
- Version 17.1, in parallel to changes in TUnfold
- Version 16.1, parallel to changes in TUnfold
- Version 16.0, parallel to changes in TUnfold
- Version 15, use L-curve scan to scan the average correlation
This file is part of TUnfold.
TUnfold is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
TUnfold is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with TUnfold. If not, see http://www.gnu.org/licenses/.
- Author
- Stefan Schmitt DESY, 14.10.2008
Definition in file testUnfold4.C.