Class describing a Vavilov distribution.
The probability density function of the Vavilov distribution as function of Landau's parameter is given by:
p(\lambda_L; \kappa, \beta^2) = \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda_L s} ds
where \phi(s) = e^{C} e^{\psi(s)} with C = \kappa (1+\beta^2 \gamma ) and \psi(s)= s \ln \kappa + (s+\beta^2 \kappa) \cdot \left ( \int \limits_{0}^{1} \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,d t- \gamma \right ) - \kappa \, e^{\frac{-s}{\kappa}}. \gamma = 0.5772156649\dots is Euler's constant.
For the class VavilovFast, Pdf returns the Vavilov distribution as function of Landau's parameter \lambda_L = \lambda_V/\kappa - \ln \kappa, which is the convention used in the CERNLIB routines, and in the tables by S.M. Seltzer and M.J. Berger: Energy loss stragglin of protons and mesons: Tabulation of the Vavilov distribution, pp 187-203 in: National Research Council (U.S.), Committee on Nuclear Science: Studies in penetration of charged particles in matter, Nat. Akad. Sci. Publication 1133, Nucl. Sci. Series Report No. 39, Washington (Nat. Akad. Sci.) 1964, 388 pp. Available from Google books
Therefore, for small values of \kappa < 0.01, pdf approaches the Landau distribution.
For values \kappa > 10, the Gauss approximation should be used with \mu and \sigma given by Vavilov::mean(kappa, beta2) and sqrt(Vavilov::variance(kappa, beta2).
For values \kappa > 10, the Gauss approximation should be used with \mu and \sigma given by Vavilov::mean(kappa, beta2) and sqrt(Vavilov::variance(kappa, beta2).
The original Vavilov pdf is obtained by v.Pdf(lambdaV/kappa-log(kappa))/kappa.
For detailed description see A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, Nucl. Instr. and Meth. B47 (1990) 215-224, which has been implemented in CERNLIB (G115).
The class stores coefficients needed to calculate p(\lambda; \kappa, \beta^2) for fixed values of \kappa and \beta^2. Changing these values is computationally expensive.
The parameter \kappa must be in the range 0.01 \le \kappa \le 12.
The parameter \beta^2 must be in the range 0 \le \beta^2 \le 1.
Average times on a Pentium Core2 Duo P8400 2.26GHz:
- 9.9us per call to SetKappaBeta2 or constructor
- 0.095us per call to Pdf, Cdf
- 3.7us per first call to Quantile after SetKappaBeta2 or constructor
- 0.137us per subsequent call to Quantile
Benno List, June 2010
Definition at line 116 of file VavilovFast.h.