306 const char* extF,
const char* extD)
361 const char * weight,
TTree * data,
365 const char* extF,
const char* extD)
421 const char * training,
424 const char* extF,
const char* extD)
441 if(testcut==
"") testcut =
Form(
"!(%s)",training);
451 data->
Draw(
Form(
">>fTestList_%lu",(
ULong_t)
this),(
const char *)testcut,
"goff");
455 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
487 const char * weight,
TTree * data,
488 const char * training,
491 const char* extF,
const char* extD)
508 if(testcut==
"") testcut =
Form(
"!(%s)",training);
518 data->
Draw(
Form(
">>fTestList_%lu",(
ULong_t)
this),(
const char *)testcut,
"goff");
522 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
549 std::cerr <<
"Error: data already defined." << std::endl;
610 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
629 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
746 Bool_t minE_Train =
false;
752 Int_t displayStepping = 1;
756 displayStepping = atoi(out.
Data() + 7);
766 TGraph *train_residual_plot = 0;
767 TGraph *test_residual_plot = 0;
769 Error(
"Train",
"Training/Test samples still not defined. Cannot train the neural network");
772 Info(
"Train",
"Using %d train and %d test entries.",
776 std::cout <<
"Training the Neural Network" << std::endl;
780 canvas =
new TCanvas(
"NNtraining",
"Neural Net training");
783 if(!canvas) canvas =
new TCanvas(
"NNtraining",
"Neural Net training");
785 train_residual_plot =
new TGraph(nEpoch);
786 test_residual_plot =
new TGraph(nEpoch);
790 residual_plot->
Add(train_residual_plot);
791 residual_plot->
Add(test_residual_plot);
792 residual_plot->
Draw(
"LA");
804 for (i = 0; i < els; i++)
807 TMatrixD bfgsh(matrix_size, matrix_size);
813 for (
Int_t iepoch = 0; (iepoch < nEpoch) && (!minE_Train || training_E>minE) && (!minE_Test || test_E>minE) ; iepoch++) {
842 for (i = 0; i < els; i++)
843 onorm += dir[i] * dir[i];
851 prod -= dir[idx++] * neuron->
GetDEDw();
857 prod -= dir[idx++] * synapse->
GetDEDw();
874 for (i = 0; i < els; i++)
875 onorm += dir[i] * dir[i];
916 Error(
"TMultiLayerPerceptron::Train()",
"Line search fail");
926 Error(
"TMultiLayerPerceptron::Train()",
"Stop.");
935 if ((verbosity % 2) && ((!(iepoch % displayStepping)) || (iepoch == nEpoch - 1))) {
936 std::cout <<
"Epoch: " << iepoch
937 <<
" learn=" << training_E
938 <<
" test=" << test_E
942 train_residual_plot->
SetPoint(iepoch, iepoch,training_E);
943 test_residual_plot->
SetPoint(iepoch, iepoch,test_E);
947 for (i = 1; i < nEpoch; i++) {
948 train_residual_plot->
SetPoint(i, i, trp);
949 test_residual_plot->
SetPoint(i, i, tep);
952 if ((!(iepoch % displayStepping)) || (iepoch == nEpoch - 1)) {
968 std::cout <<
"Training done." << std::endl;
972 "Training sample",
"L");
1002 if (nEntries == 0)
return 0.0;
1033 for (i = 0; i < nEvents; i++) {
1038 for (i = 0; i < nEvents; i++) {
1055 return (error / 2.);
1068 if (target < DBL_EPSILON) {
1074 if ((1 - target) < DBL_EPSILON) {
1099 if (target > DBL_EPSILON) {
1131 for (i = 0; i < nEvents; i++) {
1158 for (i = 0; i < nEvents; i++) {
1220 Bool_t normalize =
false;
1224 Int_t maxop, maxpar, maxconst;
1286 for (i = 0; i<nneurons; i++) {
1290 if(
f.GetMultiplicity()==1 &&
f.GetNdata()>1) {
1291 Warning(
"TMultiLayerPerceptron::ExpandStructure()",
"Variable size arrays cannot be used to build implicitely an input layer. The index 0 will be assumed.");
1298 else if(
f.GetNdata()>1) {
1299 for(
Int_t j=0; j<
f.GetNdata(); j++) {
1300 if(i||j) newInput +=
",";
1308 if(i) newInput +=
",";
1314 fStructure = newInput +
":" + hiddenAndOutput;
1331 hidden(hidden.
Last(
':') + 1,
1333 if (input.
Length() == 0) {
1334 Error(
"BuildNetwork()",
"malformed structure. No input layer.");
1337 if (
output.Length() == 0) {
1338 Error(
"BuildNetwork()",
"malformed structure. No output layer.");
1357 for (i = 0; i<nneurons; i++) {
1373 Int_t prevStart = 0;
1379 end = hidden.
Index(
":", beg + 1);
1396 Error(
"BuildOneHiddenLayer",
1397 "The specification '%s' for hidden layer %d must contain only numbers!",
1398 sNumNodes.
Data(), layer - 1);
1401 for (
Int_t i = 0; i < num; i++) {
1402 name.Form(
"HiddenL%d:N%d",layer,i);
1405 for (
Int_t j = prevStart; j < prevStop; j++) {
1414 for (
Int_t i = prevStop; i < nEntries; i++) {
1416 for (
Int_t j = prevStop; j < nEntries; j++)
1421 prevStart = prevStop;
1444 Int_t prevStart = prevStop - prev;
1450 for (i = 0; i<nneurons; i++) {
1457 for (j = prevStart; j < prevStop; j++) {
1466 for (i = prevStop; i < nEntries; i++) {
1468 for (j = prevStop; j < nEntries; j++)
1489 Error(
"DrawResult()",
"no such output.");
1494 new TCanvas(
"NNresult",
"Neural Net output");
1501 setname =
Form(
"train%d",index);
1504 setname =
Form(
"test%d",index);
1506 if ((!
fData) || (!events)) {
1507 Error(
"DrawResult()",
"no dataset.");
1512 TString title =
"Neural Net Output control. ";
1514 setname =
"MLP_" + setname +
"_comp";
1517 hist =
new TH2D(setname.
Data(), title.
Data(), 50, -1, 1, 50, -1, 1);
1520 for (i = 0; i < nEvents; i++) {
1527 TString title =
"Neural Net Output. ";
1529 setname =
"MLP_" + setname;
1532 hist =
new TH1D(setname, title, 50, 1, -1);
1535 for (i = 0; i < nEvents; i++)
1543 hist =
new TH1D(setname, title, 50, 1, -1);
1545 nEvents = events->
GetN();
1546 for (i = 0; i < nEvents; i++)
1562 Error(
"TMultiLayerPerceptron::DumpWeights()",
"Invalid file name");
1570 *
output <<
"#input normalization" << std::endl;
1578 *
output <<
"#output normalization" << std::endl;
1585 *
output <<
"#neurons weights" << std::endl;
1592 *
output <<
"#synapses weights" << std::endl;
1597 ((std::ofstream *)
output)->close();
1612 Error(
"TMultiLayerPerceptron::LoadWeights()",
"Invalid file name");
1615 char *buff =
new char[100];
1616 std::ifstream input(filen.
Data());
1618 input.getline(buff, 100);
1626 input.getline(buff, 100);
1628 input.getline(buff, 100);
1635 input.getline(buff, 100);
1637 input.getline(buff, 100);
1645 input.getline(buff, 100);
1647 input.getline(buff, 100);
1694 Warning(
"TMultiLayerPerceptron::Export",
"Request to export a network using an external function");
1697 TString basefilename = filename;
1701 TString classname = basefilename;
1706 std::ofstream headerfile(header);
1707 std::ofstream sourcefile(source);
1708 headerfile <<
"#ifndef " << basefilename <<
"_h" << std::endl;
1709 headerfile <<
"#define " << basefilename <<
"_h" << std::endl << std::endl;
1710 headerfile <<
"class " << classname <<
" { " << std::endl;
1711 headerfile <<
"public:" << std::endl;
1712 headerfile <<
" " << classname <<
"() {}" << std::endl;
1713 headerfile <<
" ~" << classname <<
"() {}" << std::endl;
1714 sourcefile <<
"#include \"" << header <<
"\"" << std::endl;
1715 sourcefile <<
"#include <cmath>" << std::endl << std::endl;
1716 headerfile <<
" double Value(int index";
1717 sourcefile <<
"double " << classname <<
"::Value(int index";
1719 headerfile <<
",double in" << i;
1720 sourcefile <<
",double in" << i;
1722 headerfile <<
");" << std::endl;
1723 sourcefile <<
") {" << std::endl;
1725 sourcefile <<
" input" << i <<
" = (in" << i <<
" - "
1729 sourcefile <<
" switch(index) {" << std::endl;
1734 sourcefile <<
" case " << idx++ <<
":" << std::endl
1735 <<
" return neuron" << neuron <<
"();" << std::endl;
1736 sourcefile <<
" default:" << std::endl
1737 <<
" return 0.;" << std::endl <<
" }"
1739 sourcefile <<
"}" << std::endl << std::endl;
1740 headerfile <<
" double Value(int index, double* input);" << std::endl;
1741 sourcefile <<
"double " << classname <<
"::Value(int index, double* input) {" << std::endl;
1743 sourcefile <<
" input" << i <<
" = (input[" << i <<
"] - "
1747 sourcefile <<
" switch(index) {" << std::endl;
1752 sourcefile <<
" case " << idx++ <<
":" << std::endl
1753 <<
" return neuron" << neuron <<
"();" << std::endl;
1754 sourcefile <<
" default:" << std::endl
1755 <<
" return 0.;" << std::endl <<
" }"
1757 sourcefile <<
"}" << std::endl << std::endl;
1758 headerfile <<
"private:" << std::endl;
1760 headerfile <<
" double input" << i <<
";" << std::endl;
1765 if (!neuron->
GetPre(0)) {
1766 headerfile <<
" double neuron" << neuron <<
"();" << std::endl;
1767 sourcefile <<
"double " << classname <<
"::neuron" << neuron
1768 <<
"() {" << std::endl;
1769 sourcefile <<
" return input" << idx++ <<
";" << std::endl;
1770 sourcefile <<
"}" << std::endl << std::endl;
1772 headerfile <<
" double input" << neuron <<
"();" << std::endl;
1773 sourcefile <<
"double " << classname <<
"::input" << neuron
1774 <<
"() {" << std::endl;
1775 sourcefile <<
" double input = " << neuron->
GetWeight()
1776 <<
";" << std::endl;
1779 while ((syn = neuron->
GetPre(
n++))) {
1780 sourcefile <<
" input += synapse" << syn <<
"();" << std::endl;
1782 sourcefile <<
" return input;" << std::endl;
1783 sourcefile <<
"}" << std::endl << std::endl;
1785 headerfile <<
" double neuron" << neuron <<
"();" << std::endl;
1786 sourcefile <<
"double " << classname <<
"::neuron" << neuron <<
"() {" << std::endl;
1787 sourcefile <<
" double input = input" << neuron <<
"();" << std::endl;
1791 sourcefile <<
" return ((input < -709. ? 0. : (1/(1+exp(-input)))) * ";
1796 sourcefile <<
" return (input * ";
1801 sourcefile <<
" return (tanh(input) * ";
1806 sourcefile <<
" return (exp(-input*input) * ";
1811 sourcefile <<
" return (exp(input) / (";
1814 sourcefile <<
"exp(input" << side <<
"())";
1816 sourcefile <<
" + exp(input" << side <<
"())";
1817 sourcefile <<
") * ";
1822 sourcefile <<
" return (0.0 * ";
1827 sourcefile <<
"}" << std::endl << std::endl;
1834 headerfile <<
" double synapse" << synapse <<
"();" << std::endl;
1835 sourcefile <<
"double " << classname <<
"::synapse"
1836 << synapse <<
"() {" << std::endl;
1837 sourcefile <<
" return (neuron" << synapse->
GetPre()
1838 <<
"()*" << synapse->
GetWeight() <<
");" << std::endl;
1839 sourcefile <<
"}" << std::endl << std::endl;
1842 headerfile <<
"};" << std::endl << std::endl;
1843 headerfile <<
"#endif // " << basefilename <<
"_h" << std::endl << std::endl;
1846 std::cout << header <<
" and " << source <<
" created." << std::endl;
1848 else if(lg ==
"FORTRAN") {
1849 TString implicit =
" implicit double precision (a-h,n-z)\n";
1850 std::ofstream sigmoid(
"sigmoid.f");
1851 sigmoid <<
" double precision FUNCTION SIGMOID(X)" << std::endl
1853 <<
" IF(X.GT.37.) THEN" << std::endl
1854 <<
" SIGMOID = 1." << std::endl
1855 <<
" ELSE IF(X.LT.-709.) THEN" << std::endl
1856 <<
" SIGMOID = 0." << std::endl
1857 <<
" ELSE" << std::endl
1858 <<
" SIGMOID = 1./(1.+EXP(-X))" << std::endl
1859 <<
" ENDIF" << std::endl
1860 <<
" END" << std::endl;
1864 std::ofstream sourcefile(source);
1867 sourcefile <<
" double precision function " << filename
1868 <<
"(x, index)" << std::endl;
1869 sourcefile << implicit;
1870 sourcefile <<
" double precision x(" <<
1874 sourcefile <<
"C --- Last Layer" << std::endl;
1878 TString ifelseif =
" if (index.eq.";
1880 sourcefile << ifelseif.
Data() << idx++ <<
") then" << std::endl
1882 <<
"=neuron" << neuron <<
"(x);" << std::endl;
1883 ifelseif =
" else if (index.eq.";
1885 sourcefile <<
" else" << std::endl
1886 <<
" " << filename <<
"=0.d0" << std::endl
1887 <<
" endif" << std::endl;
1888 sourcefile <<
" end" << std::endl;
1891 sourcefile <<
"C --- First and Hidden layers" << std::endl;
1896 sourcefile <<
" double precision function neuron"
1897 << neuron <<
"(x)" << std::endl
1899 sourcefile <<
" double precision x("
1901 if (!neuron->
GetPre(0)) {
1902 sourcefile <<
" neuron" << neuron
1903 <<
" = (x(" << idx+1 <<
") - "
1907 <<
"d0" << std::endl;
1910 sourcefile <<
" neuron" << neuron
1911 <<
" = " << neuron->
GetWeight() <<
"d0" << std::endl;
1914 while ((syn = neuron->
GetPre(
n++)))
1915 sourcefile <<
" neuron" << neuron
1916 <<
" = neuron" << neuron
1917 <<
" + synapse" << syn <<
"(x)" << std::endl;
1921 sourcefile <<
" neuron" << neuron
1922 <<
"= (sigmoid(neuron" << neuron <<
")*";
1931 sourcefile <<
" neuron" << neuron
1932 <<
"= (tanh(neuron" << neuron <<
")*";
1937 sourcefile <<
" neuron" << neuron
1938 <<
"= (exp(-neuron" << neuron <<
"*neuron"
1946 sourcefile <<
" div = exp(neuron" << side <<
"())" << std::endl;
1948 sourcefile <<
" div = div + exp(neuron" << side <<
"())" << std::endl;
1949 sourcefile <<
" neuron" << neuron ;
1950 sourcefile <<
"= (exp(neuron" << neuron <<
") / div * ";
1955 sourcefile <<
" neuron " << neuron <<
"= 0.";
1961 sourcefile <<
" end" << std::endl;
1966 sourcefile <<
"C --- Synapses" << std::endl;
1970 sourcefile <<
" double precision function " <<
"synapse"
1971 << synapse <<
"(x)\n" << implicit;
1972 sourcefile <<
" double precision x("
1974 sourcefile <<
" synapse" << synapse
1975 <<
"=neuron" << synapse->
GetPre()
1976 <<
"(x)*" << synapse->
GetWeight() <<
"d0" << std::endl;
1977 sourcefile <<
" end" << std::endl << std::endl;
1981 std::cout << source <<
" created." << std::endl;
1983 else if(lg ==
"PYTHON") {
1987 std::ofstream pythonfile(pyfile);
1988 pythonfile <<
"from math import exp" << std::endl << std::endl;
1989 pythonfile <<
"from math import tanh" << std::endl << std::endl;
1990 pythonfile <<
"class " << classname <<
":" << std::endl;
1991 pythonfile <<
"\tdef value(self,index";
1993 pythonfile <<
",in" << i;
1995 pythonfile <<
"):" << std::endl;
1997 pythonfile <<
"\t\tself.input" << i <<
" = (in" << i <<
" - "
2004 pythonfile <<
"\t\tif index==" << idx++
2005 <<
": return self.neuron" << neuron <<
"();" << std::endl;
2006 pythonfile <<
"\t\treturn 0." << std::endl;
2011 pythonfile <<
"\tdef neuron" << neuron <<
"(self):" << std::endl;
2013 pythonfile <<
"\t\treturn self.input" << idx++ << std::endl;
2015 pythonfile <<
"\t\tinput = " << neuron->
GetWeight() << std::endl;
2018 while ((syn = neuron->
GetPre(
n++)))
2019 pythonfile <<
"\t\tinput = input + self.synapse"
2020 << syn <<
"()" << std::endl;
2024 pythonfile <<
"\t\tif input<-709. : return " << neuron->
GetNormalisation()[1] << std::endl;
2025 pythonfile <<
"\t\treturn ((1/(1+exp(-input)))*";
2030 pythonfile <<
"\t\treturn (input*";
2035 pythonfile <<
"\t\treturn (tanh(input)*";
2040 pythonfile <<
"\t\treturn (exp(-input*input)*";
2045 pythonfile <<
"\t\treturn (exp(input) / (";
2048 pythonfile <<
"exp(self.neuron" << side <<
"())";
2050 pythonfile <<
" + exp(self.neuron" << side <<
"())";
2051 pythonfile <<
") * ";
2056 pythonfile <<
"\t\treturn 0.";
2067 pythonfile <<
"\tdef synapse" << synapse <<
"(self):" << std::endl;
2068 pythonfile <<
"\t\treturn (self.neuron" << synapse->
GetPre()
2069 <<
"()*" << synapse->
GetWeight() <<
")" << std::endl;
2073 std::cout << pyfile <<
" created." << std::endl;
2092 for (
Int_t i = 0; i <
n; i++) {
2095 index[j] = index[i];
2110 for (i = 0; i < nEvents; i++)
2116 for (i = 0; i < nEvents; i++) {
2207 dir[idx++] = -neuron->
GetDEDw();
2211 dir[idx++] = -synapse->
GetDEDw();
2250 MLP_Line(origin, direction, alpha2);
2256 for (icount = 0; icount < 100; icount++) {
2258 MLP_Line(origin, direction, alpha3);
2275 for (icount = 0; icount < 100; icount++) {
2277 MLP_Line(origin, direction, alpha2);
2295 (err3 - err1) / ((err3 - err2) / (alpha3 - alpha2)
2296 - (err2 - err1) / (alpha2 - alpha1)));
2305 buffer[idx] = neuron->
GetWeight() - origin[idx];
2311 buffer[idx] = synapse->
GetWeight() - origin[idx];
2394 for (
Int_t i = 0; i < els; i++)
2395 delta[i].Assign(buffer[i]);
2450 dedw[idx++][0] = neuron->
GetDEDw();
2455 dedw[idx++][0] = synapse->
GetDEDw();
2458 for (
Int_t i = 0; i < els; i++)
2459 dir[i] = -direction[i][0];
2471#define NeuronSize 2.5
2474 Float_t xStep = 1./(nLayers+1.);
2476 for(layer=0; layer< nLayers-1; layer++) {
2488 Int_t num = atoi(
TString(hidden(beg, end - beg)).Data());
2491 end = hidden.
Index(
":", beg + 1);
2492 if(layer==
cnt) nNeurons_this = num;
2496 if(layer==
cnt) nNeurons_this = num;
2499 if(layer==nLayers-2) {
2501 nNeurons_next =
output.CountChar(
',')+1;
2509 Int_t num = atoi(
TString(hidden(beg, end - beg)).Data());
2512 end = hidden.
Index(
":", beg + 1);
2513 if(layer+1==
cnt) nNeurons_next = num;
2517 if(layer+1==
cnt) nNeurons_next = num;
2519 Float_t yStep_this = 1./(nNeurons_this+1.);
2520 Float_t yStep_next = 1./(nNeurons_next+1.);
2525 maxWeight = maxWeight < theSynapse->
GetWeight() ? theSynapse->
GetWeight() : maxWeight;
2528 for(
Int_t neuron1=0; neuron1<nNeurons_this; neuron1++) {
2529 for(
Int_t neuron2=0; neuron2<nNeurons_next; neuron2++) {
2530 TLine* synapse =
new TLine(xStep*(layer+1),yStep_this*(neuron1+1),xStep*(layer+2),yStep_next*(neuron2+1));
2533 if (!theSynapse)
continue;
2542 for(layer=0; layer< nLayers; layer++) {
2548 else if(layer==nLayers-1) {
2550 nNeurons =
output.CountChar(
',')+1;
2558 Int_t num = atoi(
TString(hidden(beg, end - beg)).Data());
2561 end = hidden.
Index(
":", beg + 1);
2562 if(layer==
cnt) nNeurons = num;
2566 if(layer==
cnt) nNeurons = num;
2568 Float_t yStep = 1./(nNeurons+1.);
2569 for(
Int_t neuron=0; neuron<nNeurons; neuron++) {
2571 m->SetMarkerColor(4);
2579 Float_t yStep = 1./(nrItems+1);
2580 for (
Int_t item = 0; item < nrItems; item++) {
2582 TText* label =
new TText(0.5*xStep,yStep*(item+1),brName.
Data());
2588 yStep=1./(numOutNodes+1);
2589 for (
Int_t outnode=0; outnode<numOutNodes; outnode++) {
2591 if (neuron && neuron->
GetName()) {
TMatrixT< Double_t > TMatrixD
char * Form(const char *fmt,...)
R__EXTERN TSystem * gSystem
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void SetLeftMargin(Float_t leftmargin)
Set Pad left margin in fraction of the pad width.
void SetDecimals(Bool_t dot=kTRUE)
Sets the decimals flag By default, blank characters are stripped, and then the label is correctly ali...
virtual void UnZoom()
Reset first & last bin to the full range.
static TClass * GetClass(const char *name, Bool_t load=kTRUE, Bool_t silent=kFALSE)
Static method returning pointer to TClass of the specified class name.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
A TEventList object is a list of selected events (entries) in a TTree.
virtual Long64_t GetEntry(Int_t index) const
Return value of entry at index in the list.
virtual Int_t GetN() const
A Graph is a graphics object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
1-D histogram with a double per channel (see TH1 documentation)}
virtual void Reset(Option_t *option="")
Reset.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void Draw(Option_t *option="")
Draw this histogram with options.
2-D histogram with a double per channel (see TH1 documentation)}
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Int_t Fill(Double_t)
Invalid Fill method.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
virtual TMatrixTBase< Element > & UnitMatrix()
Make a unit matrix (matrix need not be a square one).
A TMultiGraph is a collection of TGraph (or derived) objects.
TList * GetListOfGraphs() const
virtual void Add(TGraph *graph, Option_t *chopt="")
Add a new graph to the list of graphs.
virtual void Draw(Option_t *chopt="")
Draw this multigraph with its current attributes.
TAxis * GetYaxis()
Get y axis of the graph.
TAxis * GetXaxis()
Get x axis of the graph.
TTreeFormula * fEventWeight
The Learning Method.
void BuildOneHiddenLayer(const TString &sNumNodes, Int_t &layer, Int_t &prevStart, Int_t &prevStop, Bool_t lastLayer)
Builds a hidden layer, updates the number of layers.
void SteepestDir(Double_t *)
Sets the search direction to steepest descent.
void BuildNetwork()
Instanciates the network from the description.
TObjArray fNetwork
weight of the current tree in a chain
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
EventList defining the events in the training dataset.
bool GetBFGSH(TMatrixD &, TMatrixD &, TMatrixD &)
Computes the hessian matrix using the BFGS update algorithm.
void BuildHiddenLayers(TString &)
Builds hidden layers.
void BuildFirstLayer(TString &)
Instanciates the neurons in input Inputs are normalised and the type is set to kOff (simple forward o...
void SetTau(Double_t tau)
Sets Tau - used in line search (look at the constructor for the complete description of learning meth...
TMultiLayerPerceptron()
Default constructor.
Double_t GetSumSquareError() const
Error on the output for a given event.
void ConjugateGradientsDir(Double_t *, Double_t)
Sets the search direction to conjugate gradient direction beta should be: ||g_{(t+1)}||^2 / ||g_{(t)}...
Double_t fTau
EtaDecay - Eta *= EtaDecay at each epoch - Default=1.
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
void SetGammaDelta(TMatrixD &, TMatrixD &, Double_t *)
Sets the gamma (g_{(t+1)}-g_{(t)}) and delta (w_{(t+1)}-w_{(t)}) vectors Gamma is computed here,...
Int_t fReset
internal parameter used in line search
Bool_t LoadWeights(Option_t *filename="")
Loads the weights from a text file conforming to the format defined by DumpWeights.
void MLP_Batch(Double_t *)
One step for the batch (stochastic) method.
TNeuron::ENeuronType fOutType
Double_t fCurrentTreeWeight
index of the current tree in a chain
ELearningMethod fLearningMethod
EventList defining the events in the test dataset.
Double_t fLastAlpha
Tau - used in line search - Default=3.
Int_t fCurrentTree
pointer to the tree used as datasource
void Export(Option_t *filename="NNfunction", Option_t *language="C++") const
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ ,...
Double_t fEpsilon
Eta - used in stochastic minimisation - Default=0.1.
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
TNeuron::ENeuronType GetType() const
void BFGSDir(TMatrixD &, Double_t *)
Computes the direction for the BFGS algorithm as the product between the Hessian estimate (bfgsh) and...
void SetTestDataSet(TEventList *test)
Sets the Test dataset.
Bool_t fTrainingOwner
number of epochs between two resets of the search direction to the steepest descent - Default=50
void SetLearningMethod(TMultiLayerPerceptron::ELearningMethod method)
Sets the learning method.
void SetTrainingDataSet(TEventList *train)
Sets the Training dataset.
void BuildLastLayer(TString &, Int_t)
Builds the output layer Neurons are linear combinations of input, by defaul.
Double_t fDelta
Epsilon - used in stochastic minimisation - Default=0.
TTreeFormulaManager * fManager
formula representing the event weight
void Randomize() const
Randomize the weights.
Bool_t LineSearch(Double_t *, Double_t *)
Search along the line defined by direction.
virtual void Draw(Option_t *option="")
Draws the network structure.
void ExpandStructure()
Expand the structure of the first layer.
Double_t fEta
TTreeFormulaManager for the weight and neurons.
Double_t GetError(Int_t event) const
Error on the output for a given event.
Double_t fEtaDecay
Delta - used in stochastic minimisation - Default=0.
void SetEtaDecay(Double_t ed)
Sets EtaDecay - Eta *= EtaDecay at each epoch (look at the constructor for the complete description o...
void AttachData()
Connects the TTree to Neurons in input and output layers.
void SetData(TTree *)
Set the data source.
void SetEventWeight(const char *)
Set the event weight.
Bool_t DumpWeights(Option_t *filename="-") const
Dumps the weights to a text file.
void SetDelta(Double_t delta)
Sets Delta - used in stochastic minimisation (look at the constructor for the complete description of...
Double_t GetCrossEntropy() const
Cross entropy error for a softmax output neuron, for a given event.
void SetReset(Int_t reset)
Sets number of epochs between two resets of the search direction to the steepest descent.
Bool_t fTestOwner
internal flag whether one has to delete fTraining or not
void Shuffle(Int_t *, Int_t) const
Shuffle the Int_t index[n] in input.
virtual ~TMultiLayerPerceptron()
Destructor.
Double_t DerivDir(Double_t *)
scalar product between gradient and direction = derivative along direction
void MLP_Stochastic(Double_t *)
One step for the stochastic method buffer should contain the previous dw vector and will be updated.
void MLP_Line(Double_t *, Double_t *, Double_t)
Sets the weights to a point along a line Weights are set to [origin + (dist * dir)].
TNeuron::ENeuronType fType
void ComputeDEDw() const
Compute the DEDw = sum on all training events of dedw for each weight normalized by the number of eve...
Double_t GetCrossEntropyBinary() const
Cross entropy error for sigmoid output neurons, for a given event.
void DrawResult(Int_t index=0, Option_t *option="test") const
Draws the neural net output It produces an histogram with the output for the two datasets.
void SetEta(Double_t eta)
Sets Eta - used in stochastic minimisation (look at the constructor for the complete description of l...
void GetEntry(Int_t) const
Load an entry into the network.
void SetEpsilon(Double_t eps)
Sets Epsilon - used in stochastic minimisation (look at the constructor for the complete description ...
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual const char * GetName() const
Returns name of object.
Double_t GetWeight() const
void SetWeight(Double_t w)
Sets the neuron weight to w.
Double_t GetValue() const
Computes the output using the appropriate function and all the weighted inputs, or uses the branch as...
void SetDEDw(Double_t in)
Sets the derivative of the total error wrt the neuron weight.
Double_t GetDeDw() const
Computes the derivative of the error wrt the neuron weight.
Double_t GetBranch() const
Returns the formula value.
TNeuron * GetInLayer(Int_t n) const
Double_t GetError() const
Computes the error for output neurons.
TTreeFormula * UseBranch(TTree *, const char *)
Sets a formula that can be used to make the neuron an input.
TSynapse * GetPre(Int_t n) const
void ForceExternalValue(Double_t value)
Uses the branch type to force an external value.
Double_t GetTarget() const
Computes the normalized target pattern for output neurons.
const Double_t * GetNormalisation() const
ENeuronType GetType() const
Returns the neuron type.
void SetNewEvent() const
Inform the neuron that inputs of the network have changed, so that the buffered values have to be rec...
void SetNormalisation(Double_t mean, Double_t RMS)
Sets the normalization variables.
void AddInLayer(TNeuron *)
Tells a neuron which neurons form its layer (including itself).
Iterator of object array.
TObject * Next()
Return next object in array. Returns 0 when no more objects in array.
Int_t GetEntriesFast() const
virtual void AddLast(TObject *obj)
Add object in the next empty slot in the array.
TObject * UncheckedAt(Int_t i) const
TIterator * MakeIterator(Bool_t dir=kIterForward) const
Returns an array iterator.
Int_t GetLast() const
Return index of last object in array.
TObject * At(Int_t idx) const
Collectable string class.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Random number generator class based on M.
virtual Double_t Rndm()
Machine independent random number generator.
Regular expression class.
void ToLower()
Change string to lower-case.
Bool_t EndsWith(const char *pat, ECaseCompare cmp=kExact) const
Return true if string ends with the specified string.
Ssiz_t First(char c) const
Find first occurrence of a character c.
const char * Data() const
Bool_t IsAlpha() const
Returns true if all characters in string are alphabetic.
Ssiz_t Last(char c) const
Find last occurrence of a character c.
void ToUpper()
Change string to upper case.
TObjArray * Tokenize(const TString &delim) const
This function is used to isolate sequential tokens in a TString.
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Bool_t IsAlnum() const
Returns true if all characters in string are alphanumeric.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Double_t GetDeDw() const
Computes the derivative of the error wrt the synapse weight.
void SetWeight(Double_t w)
Sets the weight of the synapse.
Double_t GetWeight() const
void SetDEDw(Double_t in)
Sets the derivative of the total error wrt the synapse weight.
virtual int Load(const char *module, const char *entry="", Bool_t system=kFALSE)
Load a shared library.
virtual Bool_t ProcessEvents()
Process pending events (GUI, timers, sockets).
Base class for several text objects.
The TTimeStamp encapsulates seconds and ns since EPOCH.
A TTree represents a columnar dataset.
virtual Double_t GetWeight() const
virtual Long64_t GetEntries() const
virtual Int_t GetEntry(Long64_t entry=0, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
virtual Int_t GetTreeNumber() const
virtual void Draw(Option_t *opt)
Default Draw method for all objects.
TVirtualPad is an abstract base class for the Pad and Canvas classes.
virtual void Modified(Bool_t flag=1)=0
double beta(double x, double y)
Calculates the beta function.
double dist(Rotation3D const &r1, Rotation3D const &r2)
Double_t Sqrt(Double_t x)
static void output(int code)