Logo ROOT   6.18/05
Reference Guide
TH2.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Rene Brun 26/12/94
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include "TROOT.h"
13#include "TClass.h"
14#include "THashList.h"
15#include "TH2.h"
16#include "TVirtualPad.h"
17#include "TF2.h"
18#include "TProfile.h"
19#include "TRandom.h"
20#include "TMatrixFBase.h"
21#include "TMatrixDBase.h"
22#include "THLimitsFinder.h"
23#include "TError.h"
24#include "TMath.h"
25#include "TObjString.h"
26#include "TVirtualHistPainter.h"
27
28
30
31/** \addtogroup Hist
32@{
33\class TH2C
34\brief 2-D histogram with a byte per channel (see TH1 documentation)
35\class TH2S
36\brief 2-D histogram with a short per channel (see TH1 documentation)
37\class TH2I
38\brief 2-D histogram with an int per channel (see TH1 documentation)}
39\class TH2F
40\brief 2-D histogram with a float per channel (see TH1 documentation)}
41\class TH2D
42\brief 2-D histogram with a double per channel (see TH1 documentation)}
43@}
44*/
45
46/** \class TH2
47 Service class for 2-Dim histogram classes
48
49- TH2C a 2-D histogram with one byte per cell (char)
50- TH2S a 2-D histogram with two bytes per cell (short integer)
51- TH2I a 2-D histogram with four bytes per cell (32 bits integer)
52- TH2F a 2-D histogram with four bytes per cell (float)
53- TH2D a 2-D histogram with eight bytes per cell (double)
54*/
55
56
57////////////////////////////////////////////////////////////////////////////////
58/// Constructor.
59
61{
62 fDimension = 2;
63 fScalefactor = 1;
65}
66
67
68////////////////////////////////////////////////////////////////////////////////
69/// See comments in the TH1 base class constructors.
71TH2::TH2(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
72 ,Int_t nbinsy,Double_t ylow,Double_t yup)
73 :TH1(name,title,nbinsx,xlow,xup)
74{
75 fDimension = 2;
76 fScalefactor = 1;
77 fTsumwy = fTsumwy2 = fTsumwxy = 0;
78 if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
79 fYaxis.Set(nbinsy,ylow,yup);
80 fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
81}
82
83
84////////////////////////////////////////////////////////////////////////////////
85/// See comments in the TH1 base class constructors.
86
87TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
88 ,Int_t nbinsy,Double_t ylow,Double_t yup)
89 :TH1(name,title,nbinsx,xbins)
90{
91 fDimension = 2;
92 fScalefactor = 1;
94 if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
95 fYaxis.Set(nbinsy,ylow,yup);
96 fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
97}
98
99
100////////////////////////////////////////////////////////////////////////////////
101/// See comments in the TH1 base class constructors.
102
103TH2::TH2(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
104 ,Int_t nbinsy,const Double_t *ybins)
105 :TH1(name,title,nbinsx,xlow,xup)
106{
107 fDimension = 2;
108 fScalefactor = 1;
109 fTsumwy = fTsumwy2 = fTsumwxy = 0;
110 if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
111 if (ybins) fYaxis.Set(nbinsy,ybins);
112 else fYaxis.Set(nbinsy,0,1);
113 fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
114}
115
116
117////////////////////////////////////////////////////////////////////////////////
118/// See comments in the TH1 base class constructors.
119
120TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
121 ,Int_t nbinsy,const Double_t *ybins)
122 :TH1(name,title,nbinsx,xbins)
123{
124 fDimension = 2;
125 fScalefactor = 1;
126 fTsumwy = fTsumwy2 = fTsumwxy = 0;
127 if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
128 if (ybins) fYaxis.Set(nbinsy,ybins);
129 else fYaxis.Set(nbinsy,0,1);
130 fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
131}
132
133
134////////////////////////////////////////////////////////////////////////////////
135/// See comments in the TH1 base class constructors.
136
137TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
138 ,Int_t nbinsy,const Float_t *ybins)
139 :TH1(name,title,nbinsx,xbins)
140{
141 fDimension = 2;
142 fScalefactor = 1;
143 fTsumwy = fTsumwy2 = fTsumwxy = 0;
144 if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
145 if (ybins) fYaxis.Set(nbinsy,ybins);
146 else fYaxis.Set(nbinsy,0,1);
147 fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor.
148}
149
150
151////////////////////////////////////////////////////////////////////////////////
152/// Copy constructor.
153/// The list of functions is not copied. (Use Clone if needed)
154
155TH2::TH2(const TH2 &h) : TH1()
156{
157 ((TH2&)h).Copy(*this);
158}
159
160
161////////////////////////////////////////////////////////////////////////////////
162/// Destructor.
163
165{
166}
167
168
169////////////////////////////////////////////////////////////////////////////////
170/// Fill histogram with all entries in the buffer.
171/// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
172/// - action = 0 histogram is filled from the buffer
173/// - action = 1 histogram is filled and buffer is deleted
174/// The buffer is automatically deleted when the number of entries
175/// in the buffer is greater than the number of entries in the histogram
176
178{
179 // do we need to compute the bin size?
180 if (!fBuffer) return 0;
181 Int_t nbentries = (Int_t)fBuffer[0];
182
183 // nbentries correspond to the number of entries of histogram
184
185 if (nbentries == 0) return 0;
186 if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
187
188 Double_t *buffer = fBuffer;
189 if (nbentries < 0) {
190 nbentries = -nbentries;
191 // a reset might call BufferEmpty() giving an infinite loop
192 // Protect it by setting fBuffer = 0
193 fBuffer=0;
194 //do not reset the list of functions
195 Reset("ICES");
196 fBuffer = buffer;
197 }
198
200 //find min, max of entries in buffer
201 Double_t xmin = fBuffer[2];
203 Double_t ymin = fBuffer[3];
205 for (Int_t i=1;i<nbentries;i++) {
206 Double_t x = fBuffer[3*i+2];
207 if (x < xmin) xmin = x;
208 if (x > xmax) xmax = x;
209 Double_t y = fBuffer[3*i+3];
210 if (y < ymin) ymin = y;
211 if (y > ymax) ymax = y;
212 }
213 if (fXaxis.GetXmax() <= fXaxis.GetXmin() || fYaxis.GetXmax() <= fYaxis.GetXmin()) {
215 } else {
216 fBuffer = 0;
217 Int_t keep = fBufferSize; fBufferSize = 0;
222 fBuffer = buffer;
223 fBufferSize = keep;
224 }
225 }
226
227 fBuffer = 0;
228 for (Int_t i=0;i<nbentries;i++) {
229 Fill(buffer[3*i+2],buffer[3*i+3],buffer[3*i+1]);
230 }
231 fBuffer = buffer;
232
233 if (action > 0) { delete [] fBuffer; fBuffer = 0; fBufferSize = 0;}
234 else {
235 if (nbentries == (Int_t)fEntries) fBuffer[0] = -nbentries;
236 else fBuffer[0] = 0;
237 }
238 return nbentries;
239}
240
241
242////////////////////////////////////////////////////////////////////////////////
243/// accumulate arguments in buffer. When buffer is full, empty the buffer
244/// ~~~ {.cpp}
245/// fBuffer[0] = number of entries in buffer
246/// fBuffer[1] = w of first entry
247/// fBuffer[2] = x of first entry
248/// fBuffer[3] = y of first entry
249/// ~~~
250
252{
253 if (!fBuffer) return -3;
254 Int_t nbentries = (Int_t)fBuffer[0];
255 if (nbentries < 0) {
256 nbentries = -nbentries;
257 fBuffer[0] = nbentries;
258 if (fEntries > 0) {
259 Double_t *buffer = fBuffer; fBuffer=0;
260 Reset("ICES");
261 fBuffer = buffer;
262 }
263 }
264 if (3*nbentries+3 >= fBufferSize) {
265 BufferEmpty(1);
266 return Fill(x,y,w);
267 }
268 fBuffer[3*nbentries+1] = w;
269 fBuffer[3*nbentries+2] = x;
270 fBuffer[3*nbentries+3] = y;
271 fBuffer[0] += 1;
272 return -3;
273}
274
275
276////////////////////////////////////////////////////////////////////////////////
277/// Copy.
278
279void TH2::Copy(TObject &obj) const
280{
281 TH1::Copy(obj);
282 ((TH2&)obj).fScalefactor = fScalefactor;
283 ((TH2&)obj).fTsumwy = fTsumwy;
284 ((TH2&)obj).fTsumwy2 = fTsumwy2;
285 ((TH2&)obj).fTsumwxy = fTsumwxy;
286}
287
288
289////////////////////////////////////////////////////////////////////////////////
290/// Invalid Fill method.
291
293{
294 Error("Fill", "Invalid signature - do nothing");
295 return -1;
296}
297
298
299////////////////////////////////////////////////////////////////////////////////
300/// Increment cell defined by x,y by 1.
301///
302/// - if x or/and y is less than the low-edge of the corresponding axis first bin,
303/// the Underflow cell is incremented.
304/// - if x or/and y is equal to or greater than the upper edge of corresponding axis last bin,
305/// the Overflow cell is incremented.
306///
307/// - If the storage of the sum of squares of weights has been triggered,
308/// via the function Sumw2, then the sum of the squares of weights is incremented
309/// by 1 in the cell corresponding to x,y.
310///
311/// The function returns the corresponding global bin number which has its content
312/// incremented by 1
313
315{
316 if (fBuffer) return BufferFill(x,y,1);
317
318 Int_t binx, biny, bin;
319 fEntries++;
320 binx = fXaxis.FindBin(x);
321 biny = fYaxis.FindBin(y);
322 if (binx <0 || biny <0) return -1;
323 bin = biny*(fXaxis.GetNbins()+2) + binx;
324 AddBinContent(bin);
325 if (fSumw2.fN) ++fSumw2.fArray[bin];
326 if (binx == 0 || binx > fXaxis.GetNbins()) {
327 if (!GetStatOverflowsBehaviour()) return -1;
328 }
329 if (biny == 0 || biny > fYaxis.GetNbins()) {
330 if (!GetStatOverflowsBehaviour()) return -1;
331 }
332 ++fTsumw;
333 ++fTsumw2;
334 fTsumwx += x;
335 fTsumwx2 += x*x;
336 fTsumwy += y;
337 fTsumwy2 += y*y;
338 fTsumwxy += x*y;
339 return bin;
340}
341
342
343////////////////////////////////////////////////////////////////////////////////
344/// Increment cell defined by x,y by a weight w.
345///
346/// - if x or/and y is less than the low-edge of the corresponding axis first bin,
347/// the Underflow cell is incremented.
348/// - if x or/and y is equal to or greater than the upper edge of corresponding axis last bin,
349/// the Overflow cell is incremented.
350///
351/// - If the weight is not equal to 1, the storage of the sum of squares of
352/// weights is automatically triggered and the sum of the squares of weights is incremented
353/// by w^2 in the bin corresponding to x,y
354///
355/// The function returns the corresponding global bin number which has its content
356/// incremented by w
357
359{
360 if (fBuffer) return BufferFill(x,y,w);
361
362 Int_t binx, biny, bin;
363 fEntries++;
364 binx = fXaxis.FindBin(x);
365 biny = fYaxis.FindBin(y);
366 if (binx <0 || biny <0) return -1;
367 bin = biny*(fXaxis.GetNbins()+2) + binx;
368 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
369 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
370 AddBinContent(bin,w);
371 if (binx == 0 || binx > fXaxis.GetNbins()) {
372 if (!GetStatOverflowsBehaviour()) return -1;
373 }
374 if (biny == 0 || biny > fYaxis.GetNbins()) {
375 if (!GetStatOverflowsBehaviour()) return -1;
376 }
377 Double_t z= w;
378 fTsumw += z;
379 fTsumw2 += z*z;
380 fTsumwx += z*x;
381 fTsumwx2 += z*x*x;
382 fTsumwy += z*y;
383 fTsumwy2 += z*y*y;
384 fTsumwxy += z*x*y;
385 return bin;
386}
387
388
389////////////////////////////////////////////////////////////////////////////////
390/// Increment cell defined by namex,namey by a weight w
391///
392/// - if x or/and y is less than the low-edge of the corresponding axis first bin,
393/// the Underflow cell is incremented.
394/// - if x or/and y is equal to or greater than the upper edge of corresponding axis last bin,
395/// the Overflow cell is incremented.
396///
397/// - If the weight is not equal to 1, the storage of the sum of squares of
398/// weights is automatically triggered and the sum of the squares of weights is incremented
399/// by w^2 in the bin corresponding to namex,namey
400///
401/// The function returns the corresponding global bin number which has its content
402/// incremented by w
403
404Int_t TH2::Fill(const char *namex, const char *namey, Double_t w)
405{
406 Int_t binx, biny, bin;
407 fEntries++;
408 binx = fXaxis.FindBin(namex);
409 biny = fYaxis.FindBin(namey);
410 if (binx <0 || biny <0) return -1;
411 bin = biny*(fXaxis.GetNbins()+2) + binx;
412 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
413 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
414 AddBinContent(bin,w);
415 if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
416 if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
419 Double_t z= w;
420 fTsumw += z;
421 fTsumw2 += z*z;
422 fTsumwx += z*x;
423 fTsumwx2 += z*x*x;
424 fTsumwy += z*y;
425 fTsumwy2 += z*y*y;
426 fTsumwxy += z*x*y;
427 return bin;
428}
429
430
431////////////////////////////////////////////////////////////////////////////////
432/// Increment cell defined by namex,y by a weight w
433///
434/// - if x or/and y is less than the low-edge of the corresponding axis first bin,
435/// the Underflow cell is incremented.
436/// - if x or/and y is equal to or greater than the upper edge of corresponding axis last bin,
437/// the Overflow cell is incremented.
438///
439/// - If the weight is not equal to 1, the storage of the sum of squares of
440/// weights is automatically triggered and the sum of the squares of weights is incremented
441/// by w^2 in the bin corresponding to namex,y
442///
443/// The function returns the corresponding global bin number which has its content
444/// incremented by w
445
446Int_t TH2::Fill(const char *namex, Double_t y, Double_t w)
447{
448 Int_t binx, biny, bin;
449 fEntries++;
450 binx = fXaxis.FindBin(namex);
451 biny = fYaxis.FindBin(y);
452 if (binx <0 || biny <0) return -1;
453 bin = biny*(fXaxis.GetNbins()+2) + binx;
454 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
455 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
456 AddBinContent(bin,w);
457 if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
458 if (biny == 0 || biny > fYaxis.GetNbins()) {
459 if (!GetStatOverflowsBehaviour()) return -1;
460 }
462 Double_t z= w; //(w > 0 ? w : -w);
463 fTsumw += z;
464 fTsumw2 += z*z;
465 fTsumwx += z*x;
466 fTsumwx2 += z*x*x;
467 fTsumwy += z*y;
468 fTsumwy2 += z*y*y;
469 fTsumwxy += z*x*y;
470 return bin;
471}
472
473
474////////////////////////////////////////////////////////////////////////////////
475/// Increment cell defined by x,namey by a weight w
476///
477/// - if x or/and y is less than the low-edge of the corresponding axis first bin,
478/// the Underflow cell is incremented.
479/// - if x or/and y is equal to or greater than the upper edge of corresponding axis last bin,
480/// the Overflow cell is incremented.
481///
482/// - If the weight is not equal to 1, the storage of the sum of squares of
483/// weights is automatically triggered and the sum of the squares of weights is incremented
484/// by w^2 in the bin corresponding to x,y.
485///
486/// The function returns the corresponding global bin number which has its content
487/// incremented by w
488
489Int_t TH2::Fill(Double_t x, const char *namey, Double_t w)
490{
491 Int_t binx, biny, bin;
492 fEntries++;
493 binx = fXaxis.FindBin(x);
494 biny = fYaxis.FindBin(namey);
495 if (binx <0 || biny <0) return -1;
496 bin = biny*(fXaxis.GetNbins()+2) + binx;
497 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
498 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
499 AddBinContent(bin,w);
500 if (binx == 0 || binx > fXaxis.GetNbins()) {
501 if (!GetStatOverflowsBehaviour()) return -1;
502 }
503 if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
505 Double_t z= w; //(w > 0 ? w : -w);
506 fTsumw += z;
507 fTsumw2 += z*z;
508 fTsumwx += z*x;
509 fTsumwx2 += z*x*x;
510 fTsumwy += z*y;
511 fTsumwy2 += z*y*y;
512 fTsumwxy += z*x*y;
513 return bin;
514}
515
516
517////////////////////////////////////////////////////////////////////////////////
518/// Fill a 2-D histogram with an array of values and weights.
519///
520/// - ntimes: number of entries in arrays x and w (array size must be ntimes*stride)
521/// - x: array of x values to be histogrammed
522/// - y: array of y values to be histogrammed
523/// - w: array of weights
524/// - stride: step size through arrays x, y and w
525///
526/// - If the weight is not equal to 1, the storage of the sum of squares of
527/// weights is automatically triggered and the sum of the squares of weights is incremented
528/// by w[i]^2 in the bin corresponding to x[i],y[i].
529/// - If w is NULL each entry is assumed a weight=1
530///
531/// NB: function only valid for a TH2x object
532
533void TH2::FillN(Int_t ntimes, const Double_t *x, const Double_t *y, const Double_t *w, Int_t stride)
534{
535 Int_t binx, biny, bin, i;
536 ntimes *= stride;
537 Int_t ifirst = 0;
538
539 //If a buffer is activated, fill buffer
540 // (note that this function must not be called from TH2::BufferEmpty)
541 if (fBuffer) {
542 for (i=0;i<ntimes;i+=stride) {
543 if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
544 if (w) BufferFill(x[i],y[i],w[i]);
545 else BufferFill(x[i], y[i], 1.);
546 }
547 // fill the remaining entries if the buffer has been deleted
548 if (i < ntimes && fBuffer==0)
549 ifirst = i;
550 else
551 return;
552 }
553
554 Double_t ww = 1;
555 for (i=ifirst;i<ntimes;i+=stride) {
556 fEntries++;
557 binx = fXaxis.FindBin(x[i]);
558 biny = fYaxis.FindBin(y[i]);
559 if (binx <0 || biny <0) continue;
560 bin = biny*(fXaxis.GetNbins()+2) + binx;
561 if (w) ww = w[i];
562 if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
563 if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
564 AddBinContent(bin,ww);
565 if (binx == 0 || binx > fXaxis.GetNbins()) {
566 if (!GetStatOverflowsBehaviour()) continue;
567 }
568 if (biny == 0 || biny > fYaxis.GetNbins()) {
569 if (!GetStatOverflowsBehaviour()) continue;
570 }
571 Double_t z= ww; //(ww > 0 ? ww : -ww);
572 fTsumw += z;
573 fTsumw2 += z*z;
574 fTsumwx += z*x[i];
575 fTsumwx2 += z*x[i]*x[i];
576 fTsumwy += z*y[i];
577 fTsumwy2 += z*y[i]*y[i];
578 fTsumwxy += z*x[i]*y[i];
579 }
580}
581
582
583////////////////////////////////////////////////////////////////////////////////
584/// Fill histogram following distribution in function fname.
585///
586/// The distribution contained in the function fname (TF2) is integrated
587/// over the channel contents.
588/// It is normalized to 1.
589/// Getting one random number implies:
590/// - Generating a random number between 0 and 1 (say r1)
591/// - Look in which bin in the normalized integral r1 corresponds to
592/// - Fill histogram channel
593/// ntimes random numbers are generated
594///
595/// One can also call TF2::GetRandom2 to get a random variate from a function.
596
597void TH2::FillRandom(const char *fname, Int_t ntimes)
598{
599 Int_t bin, binx, biny, ibin, loop;
600 Double_t r1, x, y;
601 //*-*- Search for fname in the list of ROOT defined functions
602 TObject *fobj = gROOT->GetFunction(fname);
603 if (!fobj) { Error("FillRandom", "Unknown function: %s",fname); return; }
604 TF2 * f1 = dynamic_cast<TF2*>(fobj);
605 if (!f1) { Error("FillRandom", "Function: %s is not a TF2, is a %s",fname,fobj->IsA()->GetName()); return; }
606
607
608 TAxis & xAxis = fXaxis;
609 TAxis & yAxis = fYaxis;
610
611 // in case axes of histogram are not defined use the function axis
612 if (fXaxis.GetXmax() <= fXaxis.GetXmin() || fYaxis.GetXmax() <= fYaxis.GetXmin()) {
615 Info("FillRandom","Using function axis and range ([%g,%g],[%g,%g])",xmin, xmax,ymin,ymax);
616 xAxis = *(f1->GetHistogram()->GetXaxis());
617 yAxis = *(f1->GetHistogram()->GetYaxis());
618 }
619
620
621 // Allocate temporary space to store the integral and compute integral
622 Int_t nbinsx = xAxis.GetNbins();
623 Int_t nbinsy = yAxis.GetNbins();
624 Int_t nbins = nbinsx*nbinsy;
625
626
627 Double_t *integral = new Double_t[nbins+1];
628 ibin = 0;
629 integral[ibin] = 0;
630 for (biny=1;biny<=nbinsy;biny++) {
631 for (binx=1;binx<=nbinsx;binx++) {
632 ibin++;
633 Double_t fint = f1->Integral(xAxis.GetBinLowEdge(binx), xAxis.GetBinUpEdge(binx), yAxis.GetBinLowEdge(biny), yAxis.GetBinUpEdge(biny));
634 integral[ibin] = integral[ibin-1] + fint;
635 }
636 }
637
638 // Normalize integral to 1
639 if (integral[nbins] == 0 ) {
640 delete [] integral;
641 Error("FillRandom", "Integral = zero"); return;
642 }
643 for (bin=1;bin<=nbins;bin++) integral[bin] /= integral[nbins];
644
645 // Start main loop ntimes
646 for (loop=0;loop<ntimes;loop++) {
647 r1 = gRandom->Rndm();
648 ibin = TMath::BinarySearch(nbins,&integral[0],r1);
649 biny = ibin/nbinsx;
650 binx = 1 + ibin - nbinsx*biny;
651 biny++;
652 x = xAxis.GetBinCenter(binx);
653 y = yAxis.GetBinCenter(biny);
654 Fill(x,y);
655 }
656 delete [] integral;
657}
658
659
660////////////////////////////////////////////////////////////////////////////////
661/// Fill histogram following distribution in histogram h.
662///
663/// The distribution contained in the histogram h (TH2) is integrated
664/// over the channel contents.
665/// It is normalized to 1.
666/// Getting one random number implies:
667/// - Generating a random number between 0 and 1 (say r1)
668/// - Look in which bin in the normalized integral r1 corresponds to
669/// - Fill histogram channel
670/// ntimes random numbers are generated
671
673{
674 if (!h) { Error("FillRandom", "Null histogram"); return; }
675 if (fDimension != h->GetDimension()) {
676 Error("FillRandom", "Histograms with different dimensions"); return;
677 }
678
679 if (h->ComputeIntegral() == 0) return;
680
681 Int_t loop;
682 Double_t x,y;
683 TH2 *h2 = (TH2*)h;
684 for (loop=0;loop<ntimes;loop++) {
685 h2->GetRandom2(x,y);
686 Fill(x,y);
687 }
688}
689
690
691////////////////////////////////////////////////////////////////////////////////
692
693void TH2::DoFitSlices(bool onX,
694 TF1 *f1, Int_t firstbin, Int_t lastbin, Int_t cut, Option_t *option, TObjArray* arr)
695{
696 TAxis& outerAxis = (onX ? fYaxis : fXaxis);
697 TAxis& innerAxis = (onX ? fXaxis : fYaxis);
698
699 Int_t nbins = outerAxis.GetNbins();
700 if (firstbin < 0) firstbin = 0;
701 if (lastbin < 0 || lastbin > nbins + 1) lastbin = nbins + 1;
702 if (lastbin < firstbin) {firstbin = 0; lastbin = nbins + 1;}
703 TString opt = option;
704 opt.ToLower();
705 Int_t ngroup = 1;
706 if (opt.Contains("g2")) {ngroup = 2; opt.ReplaceAll("g2","");}
707 if (opt.Contains("g3")) {ngroup = 3; opt.ReplaceAll("g3","");}
708 if (opt.Contains("g4")) {ngroup = 4; opt.ReplaceAll("g4","");}
709 if (opt.Contains("g5")) {ngroup = 5; opt.ReplaceAll("g5","");}
710
711 // implement option S sliding merge for each bin using in conjunction with a given Gn
712 Int_t nstep = ngroup;
713 if (opt.Contains("s")) nstep = 1;
714
715 //default is to fit with a gaussian
716 if (f1 == 0) {
717 f1 = (TF1*)gROOT->GetFunction("gaus");
718 if (f1 == 0) f1 = new TF1("gaus","gaus",innerAxis.GetXmin(),innerAxis.GetXmax());
719 else f1->SetRange(innerAxis.GetXmin(),innerAxis.GetXmax());
720 }
721 Int_t npar = f1->GetNpar();
722 if (npar <= 0) return;
723 Double_t *parsave = new Double_t[npar];
724 f1->GetParameters(parsave);
725
726 if (arr) {
727 arr->SetOwner();
728 arr->Expand(npar + 1);
729 }
730
731 //Create one histogram for each function parameter
732 Int_t ipar;
733 TH1D **hlist = new TH1D*[npar];
734 char *name = new char[2000];
735 char *title = new char[2000];
736 const TArrayD *bins = outerAxis.GetXbins();
737 for (ipar=0;ipar<npar;ipar++) {
738 snprintf(name,2000,"%s_%d",GetName(),ipar);
739 snprintf(title,2000,"Fitted value of par[%d]=%s",ipar,f1->GetParName(ipar));
740 delete gDirectory->FindObject(name);
741 if (bins->fN == 0) {
742 hlist[ipar] = new TH1D(name,title, nbins, outerAxis.GetXmin(), outerAxis.GetXmax());
743 } else {
744 hlist[ipar] = new TH1D(name,title, nbins,bins->fArray);
745 }
746 hlist[ipar]->GetXaxis()->SetTitle(outerAxis.GetTitle());
747 if (arr)
748 (*arr)[ipar] = hlist[ipar];
749 }
750 snprintf(name,2000,"%s_chi2",GetName());
751 delete gDirectory->FindObject(name);
752 TH1D *hchi2 = 0;
753 if (bins->fN == 0) {
754 hchi2 = new TH1D(name,"chisquare", nbins, outerAxis.GetXmin(), outerAxis.GetXmax());
755 } else {
756 hchi2 = new TH1D(name,"chisquare", nbins, bins->fArray);
757 }
758 hchi2->GetXaxis()->SetTitle(outerAxis.GetTitle());
759 if (arr)
760 (*arr)[npar] = hchi2;
761
762 //Loop on all bins in Y, generate a projection along X
763 Int_t bin;
765 // in case of sliding merge nstep=1, i.e. do slices starting for every bin
766 // now do not slices case with overflow (makes more sense)
767 for (bin=firstbin;bin+ngroup-1<=lastbin;bin += nstep) {
768 TH1D *hp;
769 if (onX)
770 hp= ProjectionX("_temp",bin,bin+ngroup-1,"e");
771 else
772 hp= ProjectionY("_temp",bin,bin+ngroup-1,"e");
773 if (hp == 0) continue;
775 if (nentries == 0 || nentries < cut) {delete hp; continue;}
776 f1->SetParameters(parsave);
777 hp->Fit(f1,opt.Data());
778 Int_t npfits = f1->GetNumberFitPoints();
779 if (npfits > npar && npfits >= cut) {
780 Int_t binOn = bin + ngroup/2;
781 for (ipar=0;ipar<npar;ipar++) {
782 hlist[ipar]->Fill(outerAxis.GetBinCenter(binOn),f1->GetParameter(ipar));
783 hlist[ipar]->SetBinError(binOn,f1->GetParError(ipar));
784 }
785 hchi2->SetBinContent(binOn,f1->GetChisquare()/(npfits-npar));
786 }
787 delete hp;
788 }
789 delete [] parsave;
790 delete [] name;
791 delete [] title;
792 delete [] hlist;
793}
794
795
796////////////////////////////////////////////////////////////////////////////////
797/// Project slices along X in case of a 2-D histogram, then fit each slice
798/// with function f1 and make a histogram for each fit parameter
799/// Only bins along Y between firstybin and lastybin are considered.
800/// By default (firstybin == 0, lastybin == -1), all bins in y including
801/// over- and underflows are taken into account.
802/// If f1=0, a gaussian is assumed
803/// Before invoking this function, one can set a subrange to be fitted along X
804/// via f1->SetRange(xmin,xmax)
805/// The argument option (default="QNR") can be used to change the fit options.
806/// - "Q" means Quiet mode
807/// - "N" means do not show the result of the fit
808/// - "R" means fit the function in the specified function range
809/// - "G2" merge 2 consecutive bins along X
810/// - "G3" merge 3 consecutive bins along X
811/// - "G4" merge 4 consecutive bins along X
812/// - "G5" merge 5 consecutive bins along X
813/// - "S" sliding merge: merge n consecutive bins along X accordingly to what Gn is given.
814/// It makes sense when used together with a Gn option
815///
816/// The generated histograms are returned by adding them to arr, if arr is not NULL.
817/// arr's SetOwner() is called, to signal that it is the user's responsibility to
818/// delete the histograms, possibly by deleting the array.
819/// ~~~ {.cpp}
820/// TObjArray aSlices;
821/// h2->FitSlicesX(func, 0, -1, 0, "QNR", &aSlices);
822/// ~~~
823/// will already delete the histograms once aSlice goes out of scope. aSlices will
824/// contain the histogram for the i-th parameter of the fit function at aSlices[i];
825/// aSlices[n] (n being the number of parameters) contains the chi2 distribution of
826/// the fits.
827///
828/// If arr is NULL, the generated histograms are added to the list of objects
829/// in the current directory. It is the user's responsibility to delete
830/// these histograms.
831///
832/// Example: Assume a 2-d histogram h2
833/// ~~~ {.cpp}
834/// Root > h2->FitSlicesX(); produces 4 TH1D histograms
835/// with h2_0 containing parameter 0(Constant) for a Gaus fit
836/// of each bin in Y projected along X
837/// with h2_1 containing parameter 1(Mean) for a gaus fit
838/// with h2_2 containing parameter 2(StdDev) for a gaus fit
839/// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
840///
841/// Root > h2->FitSlicesX(0,15,22,10);
842/// same as above, but only for bins 15 to 22 along Y
843/// and only for bins in Y for which the corresponding projection
844/// along X has more than cut bins filled.
845/// ~~~
846/// NOTE: To access the generated histograms in the current directory, do eg:
847/// ~~~ {.cpp}
848/// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
849/// ~~~
850
851void TH2::FitSlicesX(TF1 *f1, Int_t firstybin, Int_t lastybin, Int_t cut, Option_t *option, TObjArray* arr)
852{
853 DoFitSlices(true, f1, firstybin, lastybin, cut, option, arr);
854
855}
856
857
858////////////////////////////////////////////////////////////////////////////////
859/// Project slices along Y in case of a 2-D histogram, then fit each slice
860/// with function f1 and make a histogram for each fit parameter
861/// Only bins along X between firstxbin and lastxbin are considered.
862/// By default (firstxbin == 0, lastxbin == -1), all bins in x including
863/// over- and underflows are taken into account.
864/// If f1=0, a gaussian is assumed
865/// Before invoking this function, one can set a subrange to be fitted along Y
866/// via f1->SetRange(ymin,ymax)
867/// The argument option (default="QNR") can be used to change the fit options.
868/// - "Q" means Quiet mode
869/// - "N" means do not show the result of the fit
870/// - "R" means fit the function in the specified function range
871/// - "G2" merge 2 consecutive bins along Y
872/// - "G3" merge 3 consecutive bins along Y
873/// - "G4" merge 4 consecutive bins along Y
874/// - "G5" merge 5 consecutive bins along Y
875/// - "S" sliding merge: merge n consecutive bins along Y accordingly to what Gn is given.
876/// It makes sense when used together with a Gn option
877///
878/// The generated histograms are returned by adding them to arr, if arr is not NULL.
879/// arr's SetOwner() is called, to signal that it is the user's responsibility to
880/// delete the histograms, possibly by deleting the array.
881/// ~~~ {.cpp}
882/// TObjArray aSlices;
883/// h2->FitSlicesY(func, 0, -1, 0, "QNR", &aSlices);
884/// ~~~
885/// will already delete the histograms once aSlice goes out of scope. aSlices will
886/// contain the histogram for the i-th parameter of the fit function at aSlices[i];
887/// aSlices[n] (n being the number of parameters) contains the chi2 distribution of
888/// the fits.
889///
890/// If arr is NULL, the generated histograms are added to the list of objects
891/// in the current directory. It is the user's responsibility to delete
892/// these histograms.
893///
894/// Example: Assume a 2-d histogram h2
895/// ~~~ {.cpp}
896/// Root > h2->FitSlicesY(); produces 4 TH1D histograms
897/// with h2_0 containing parameter 0(Constant) for a Gaus fit
898/// of each bin in X projected along Y
899/// with h2_1 containing parameter 1(Mean) for a gaus fit
900/// with h2_2 containing parameter 2(StdDev) for a gaus fit
901/// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
902///
903/// Root > h2->FitSlicesY(0,15,22,10);
904/// same as above, but only for bins 15 to 22 along X
905/// and only for bins in X for which the corresponding projection
906/// along Y has more than cut bins filled.
907/// ~~~
908///
909/// NOTE: To access the generated histograms in the current directory, do eg:
910/// ~~~ {.cpp}
911/// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
912/// ~~~
913///
914/// A complete example of this function is given in tutorial:fitslicesy.C.
915
916void TH2::FitSlicesY(TF1 *f1, Int_t firstxbin, Int_t lastxbin, Int_t cut, Option_t *option, TObjArray* arr)
917{
918 DoFitSlices(false, f1, firstxbin, lastxbin, cut, option, arr);
919}
920
922{
923 // See comments in TH1::GetBin
924 Int_t ofy = fYaxis.GetNbins() + 1; // overflow bin
925 if (biny < 0) biny = 0;
926 if (biny > ofy) biny = ofy;
927
928 return TH1::GetBin(binx) + (fXaxis.GetNbins() + 2) * biny;
929}
930
931
932////////////////////////////////////////////////////////////////////////////////
933/// compute first cell (binx,biny) in the range [firstxbin,lastxbin][firstybin,lastybin] for which
934/// diff = abs(cell_content-c) <= maxdiff
935/// In case several cells in the specified range with diff=0 are found
936/// the first cell found is returned in binx,biny.
937/// In case several cells in the specified range satisfy diff <=maxdiff
938/// the cell with the smallest difference is returned in binx,biny.
939/// In all cases the function returns the smallest difference.
940///
941/// NOTE1: if firstxbin < 0, firstxbin is set to 1
942/// if (lastxbin < firstxbin then lastxbin is set to the number of bins in X
943/// ie if firstxbin=1 and lastxbin=0 (default) the search is on all bins in X except
944/// for X's under- and overflow bins.
945/// if firstybin < 0, firstybin is set to 1
946/// if (lastybin < firstybin then lastybin is set to the number of bins in Y
947/// ie if firstybin=1 and lastybin=0 (default) the search is on all bins in Y except
948/// for Y's under- and overflow bins.
949///
950/// NOTE2: if maxdiff=0 (default), the first cell with content=c is returned.
951
952Double_t TH2::GetBinWithContent2(Double_t c, Int_t &binx, Int_t &biny, Int_t firstxbin, Int_t lastxbin,
953 Int_t firstybin, Int_t lastybin, Double_t maxdiff) const
954{
955 if (fDimension != 2) {
956 binx = -1;
957 biny = -1;
958 Error("GetBinWithContent2","function is only valid for 2-D histograms");
959 return 0;
960 }
961 if (firstxbin < 0) firstxbin = 1;
962 if (lastxbin < firstxbin) lastxbin = fXaxis.GetNbins();
963 if (firstybin < 0) firstybin = 1;
964 if (lastybin < firstybin) lastybin = fYaxis.GetNbins();
965 Double_t diff, curmax = 1.e240;
966 for (Int_t j = firstybin; j <= lastybin; j++) {
967 for (Int_t i = firstxbin; i <= lastxbin; i++) {
968 diff = TMath::Abs(GetBinContent(i,j)-c);
969 if (diff <= 0) {binx = i; biny=j; return diff;}
970 if (diff < curmax && diff <= maxdiff) {curmax = diff, binx=i; biny=j;}
971 }
972 }
973 return curmax;
974}
975
976
977////////////////////////////////////////////////////////////////////////////////
978/// Return correlation factor between axis1 and axis2.
979
981{
982 if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
983 Error("GetCorrelationFactor","Wrong parameters");
984 return 0;
985 }
986 if (axis1 == axis2) return 1;
987 Double_t stddev1 = GetStdDev(axis1);
988 if (stddev1 == 0) return 0;
989 Double_t stddev2 = GetStdDev(axis2);
990 if (stddev2 == 0) return 0;
991 return GetCovariance(axis1,axis2)/stddev1/stddev2;
992}
993
994
995////////////////////////////////////////////////////////////////////////////////
996/// Return covariance between axis1 and axis2.
997
999{
1000 if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
1001 Error("GetCovariance","Wrong parameters");
1002 return 0;
1003 }
1004 Double_t stats[kNstat];
1005 GetStats(stats);
1006 Double_t sumw = stats[0];
1007 //Double_t sumw2 = stats[1];
1008 Double_t sumwx = stats[2];
1009 Double_t sumwx2 = stats[3];
1010 Double_t sumwy = stats[4];
1011 Double_t sumwy2 = stats[5];
1012 Double_t sumwxy = stats[6];
1013
1014 if (sumw == 0) return 0;
1015 if (axis1 == 1 && axis2 == 1) {
1016 return TMath::Abs(sumwx2/sumw - sumwx/sumw*sumwx/sumw);
1017 }
1018 if (axis1 == 2 && axis2 == 2) {
1019 return TMath::Abs(sumwy2/sumw - sumwy/sumw*sumwy/sumw);
1020 }
1021 return sumwxy/sumw - sumwx/sumw*sumwy/sumw;
1022}
1023
1024
1025////////////////////////////////////////////////////////////////////////////////
1026/// Return 2 random numbers along axis x and y distributed according
1027/// the cell-contents of a 2-dim histogram
1028/// return a NaN if the histogram has a bin with negative content
1029
1031{
1032 Int_t nbinsx = GetNbinsX();
1033 Int_t nbinsy = GetNbinsY();
1034 Int_t nbins = nbinsx*nbinsy;
1035 Double_t integral;
1036 // compute integral checking that all bins have positive content (see ROOT-5894)
1037 if (fIntegral) {
1038 if (fIntegral[nbins+1] != fEntries) integral = ComputeIntegral(true);
1039 else integral = fIntegral[nbins];
1040 } else {
1041 integral = ComputeIntegral(true);
1042 }
1043 if (integral == 0 ) { x = 0; y = 0; return;}
1044 // case histogram has negative bins
1045 if (integral == TMath::QuietNaN() ) { x = TMath::QuietNaN(); y = TMath::QuietNaN(); return;}
1046
1047 Double_t r1 = gRandom->Rndm();
1048 Int_t ibin = TMath::BinarySearch(nbins,fIntegral,(Double_t) r1);
1049 Int_t biny = ibin/nbinsx;
1050 Int_t binx = ibin - nbinsx*biny;
1051 x = fXaxis.GetBinLowEdge(binx+1);
1052 if (r1 > fIntegral[ibin]) x +=
1053 fXaxis.GetBinWidth(binx+1)*(r1-fIntegral[ibin])/(fIntegral[ibin+1] - fIntegral[ibin]);
1054 y = fYaxis.GetBinLowEdge(biny+1) + fYaxis.GetBinWidth(biny+1)*gRandom->Rndm();
1055}
1056
1057
1058////////////////////////////////////////////////////////////////////////////////
1059/// Fill the array stats from the contents of this histogram
1060/// The array stats must be correctly dimensioned in the calling program.
1061/// ~~~ {.cpp}
1062/// stats[0] = sumw
1063/// stats[1] = sumw2
1064/// stats[2] = sumwx
1065/// stats[3] = sumwx2
1066/// stats[4] = sumwy
1067/// stats[5] = sumwy2
1068/// stats[6] = sumwxy
1069/// ~~~
1070///
1071/// If no axis-subranges are specified (via TAxis::SetRange), the array stats
1072/// is simply a copy of the statistics quantities computed at filling time.
1073/// If sub-ranges are specified, the function recomputes these quantities
1074/// from the bin contents in the current axis ranges.
1075///
1076/// Note that the mean value/StdDev is computed using the bins in the currently
1077/// defined ranges (see TAxis::SetRange). By default the ranges include
1078/// all bins from 1 to nbins included, excluding underflows and overflows.
1079/// To force the underflows and overflows in the computation, one must
1080/// call the static function TH1::StatOverflows(kTRUE) before filling
1081/// the histogram.
1082
1083void TH2::GetStats(Double_t *stats) const
1084{
1085 if (fBuffer) ((TH2*)this)->BufferEmpty();
1086
1088 std::fill(stats, stats + 7, 0);
1089
1090 Int_t firstBinX = fXaxis.GetFirst();
1091 Int_t lastBinX = fXaxis.GetLast();
1092 Int_t firstBinY = fYaxis.GetFirst();
1093 Int_t lastBinY = fYaxis.GetLast();
1094 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
1097 if (firstBinX == 1) firstBinX = 0;
1098 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
1099 }
1101 if (firstBinY == 1) firstBinY = 0;
1102 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
1103 }
1104 }
1105 for (Int_t biny = firstBinY; biny <= lastBinY; ++biny) {
1106 Double_t y = fYaxis.GetBinCenter(biny);
1107 for (Int_t binx = firstBinX; binx <= lastBinX; ++binx) {
1108 Double_t x = fXaxis.GetBinCenter(binx);
1109 //w = TMath::Abs(GetBinContent(bin));
1110 Int_t bin = GetBin(binx,biny);
1112 Double_t wx = w * x; // avoid some extra multiplications at the expense of some clarity
1113 Double_t wy = w * y;
1114
1115 stats[0] += w;
1116 stats[1] += GetBinErrorSqUnchecked(bin);
1117 stats[2] += wx;
1118 stats[3] += wx * x;
1119 stats[4] += wy;
1120 stats[5] += wy * y;
1121 stats[6] += wx * y;
1122 }
1123 }
1124 } else {
1125 stats[0] = fTsumw;
1126 stats[1] = fTsumw2;
1127 stats[2] = fTsumwx;
1128 stats[3] = fTsumwx2;
1129 stats[4] = fTsumwy;
1130 stats[5] = fTsumwy2;
1131 stats[6] = fTsumwxy;
1132 }
1133}
1134
1135
1136////////////////////////////////////////////////////////////////////////////////
1137/// Return integral of bin contents. Only bins in the bins range are considered.
1138/// By default the integral is computed as the sum of bin contents in the range.
1139/// if option "width" is specified, the integral is the sum of
1140/// the bin contents multiplied by the bin width in x and in y.
1141
1143{
1145 fYaxis.GetFirst(),fYaxis.GetLast(),option);
1146}
1147
1148
1149////////////////////////////////////////////////////////////////////////////////
1150/// Return integral of bin contents in range [firstxbin,lastxbin],[firstybin,lastybin]
1151/// for a 2-D histogram
1152/// By default the integral is computed as the sum of bin contents in the range.
1153/// if option "width" is specified, the integral is the sum of
1154/// the bin contents multiplied by the bin width in x and in y.
1155
1156Double_t TH2::Integral(Int_t firstxbin, Int_t lastxbin, Int_t firstybin, Int_t lastybin, Option_t *option) const
1157{
1158 double err = 0;
1159 return DoIntegral(firstxbin,lastxbin,firstybin,lastybin,-1,0,err,option);
1160}
1161
1162
1163////////////////////////////////////////////////////////////////////////////////
1164/// Return integral of bin contents in range [firstxbin,lastxbin],[firstybin,lastybin]
1165/// for a 2-D histogram. Calculates also the integral error using error propagation
1166/// from the bin errors assuming that all the bins are uncorrelated.
1167/// By default the integral is computed as the sum of bin contents in the range.
1168/// if option "width" is specified, the integral is the sum of
1169/// the bin contents multiplied by the bin width in x and in y.
1170
1171Double_t TH2::IntegralAndError(Int_t firstxbin, Int_t lastxbin, Int_t firstybin, Int_t lastybin, Double_t & error, Option_t *option) const
1172{
1173 return DoIntegral(firstxbin,lastxbin,firstybin,lastybin,-1,0,error,option,kTRUE);
1174}
1175
1176
1177////////////////////////////////////////////////////////////////////////////////
1178///illegal for a TH2
1179
1181{
1182 Error("Interpolate","This function must be called with 2 arguments for a TH2");
1183 return 0;
1184}
1185
1186
1187////////////////////////////////////////////////////////////////////////////////
1188/// Given a point P(x,y), Interpolate approximates the value via bilinear
1189/// interpolation based on the four nearest bin centers
1190/// see Wikipedia, Bilinear Interpolation
1191/// Andy Mastbaum 10/8/2008
1192/// vaguely based on R.Raja 6-Sep-2008
1193
1195{
1196 Double_t f=0;
1197 Double_t x1=0,x2=0,y1=0,y2=0;
1198 Double_t dx,dy;
1199 Int_t bin_x = fXaxis.FindBin(x);
1200 Int_t bin_y = fYaxis.FindBin(y);
1201 if(bin_x<1 || bin_x>GetNbinsX() || bin_y<1 || bin_y>GetNbinsY()) {
1202 Error("Interpolate","Cannot interpolate outside histogram domain.");
1203 return 0;
1204 }
1205 Int_t quadrant = 0; // CCW from UR 1,2,3,4
1206 // which quadrant of the bin (bin_P) are we in?
1207 dx = fXaxis.GetBinUpEdge(bin_x)-x;
1208 dy = fYaxis.GetBinUpEdge(bin_y)-y;
1209 if (dx<=fXaxis.GetBinWidth(bin_x)/2 && dy<=fYaxis.GetBinWidth(bin_y)/2)
1210 quadrant = 1; // upper right
1211 if (dx>fXaxis.GetBinWidth(bin_x)/2 && dy<=fYaxis.GetBinWidth(bin_y)/2)
1212 quadrant = 2; // upper left
1213 if (dx>fXaxis.GetBinWidth(bin_x)/2 && dy>fYaxis.GetBinWidth(bin_y)/2)
1214 quadrant = 3; // lower left
1215 if (dx<=fXaxis.GetBinWidth(bin_x)/2 && dy>fYaxis.GetBinWidth(bin_y)/2)
1216 quadrant = 4; // lower right
1217 switch(quadrant) {
1218 case 1:
1219 x1 = fXaxis.GetBinCenter(bin_x);
1220 y1 = fYaxis.GetBinCenter(bin_y);
1221 x2 = fXaxis.GetBinCenter(bin_x+1);
1222 y2 = fYaxis.GetBinCenter(bin_y+1);
1223 break;
1224 case 2:
1225 x1 = fXaxis.GetBinCenter(bin_x-1);
1226 y1 = fYaxis.GetBinCenter(bin_y);
1227 x2 = fXaxis.GetBinCenter(bin_x);
1228 y2 = fYaxis.GetBinCenter(bin_y+1);
1229 break;
1230 case 3:
1231 x1 = fXaxis.GetBinCenter(bin_x-1);
1232 y1 = fYaxis.GetBinCenter(bin_y-1);
1233 x2 = fXaxis.GetBinCenter(bin_x);
1234 y2 = fYaxis.GetBinCenter(bin_y);
1235 break;
1236 case 4:
1237 x1 = fXaxis.GetBinCenter(bin_x);
1238 y1 = fYaxis.GetBinCenter(bin_y-1);
1239 x2 = fXaxis.GetBinCenter(bin_x+1);
1240 y2 = fYaxis.GetBinCenter(bin_y);
1241 break;
1242 }
1243 Int_t bin_x1 = fXaxis.FindBin(x1);
1244 if(bin_x1<1) bin_x1=1;
1245 Int_t bin_x2 = fXaxis.FindBin(x2);
1246 if(bin_x2>GetNbinsX()) bin_x2=GetNbinsX();
1247 Int_t bin_y1 = fYaxis.FindBin(y1);
1248 if(bin_y1<1) bin_y1=1;
1249 Int_t bin_y2 = fYaxis.FindBin(y2);
1250 if(bin_y2>GetNbinsY()) bin_y2=GetNbinsY();
1251 Int_t bin_q22 = GetBin(bin_x2,bin_y2);
1252 Int_t bin_q12 = GetBin(bin_x1,bin_y2);
1253 Int_t bin_q11 = GetBin(bin_x1,bin_y1);
1254 Int_t bin_q21 = GetBin(bin_x2,bin_y1);
1255 Double_t q11 = RetrieveBinContent(bin_q11);
1256 Double_t q12 = RetrieveBinContent(bin_q12);
1257 Double_t q21 = RetrieveBinContent(bin_q21);
1258 Double_t q22 = RetrieveBinContent(bin_q22);
1259 Double_t d = 1.0*(x2-x1)*(y2-y1);
1260 f = 1.0*q11/d*(x2-x)*(y2-y)+1.0*q21/d*(x-x1)*(y2-y)+1.0*q12/d*(x2-x)*(y-y1)+1.0*q22/d*(x-x1)*(y-y1);
1261 return f;
1262}
1263
1264
1265////////////////////////////////////////////////////////////////////////////////
1266///illegal for a TH2
1267
1269{
1270 Error("Interpolate","This function must be called with 2 arguments for a TH2");
1271 return 0;
1272}
1273
1274
1275////////////////////////////////////////////////////////////////////////////////
1276/// Statistical test of compatibility in shape between
1277/// THIS histogram and h2, using Kolmogorov test.
1278/// Default: Ignore under- and overflow bins in comparison
1279///
1280/// option is a character string to specify options
1281/// - "U" include Underflows in test
1282/// - "O" include Overflows
1283/// - "N" include comparison of normalizations
1284/// - "D" Put out a line of "Debug" printout
1285/// - "M" Return the Maximum Kolmogorov distance instead of prob
1286///
1287/// The returned function value is the probability of test
1288/// (much less than one means NOT compatible)
1289///
1290/// The KS test uses the distance between the pseudo-CDF's obtained
1291/// from the histogram. Since in 2D the order for generating the pseudo-CDF is
1292/// arbitrary, two pairs of pseudo-CDF are used, one starting from the x axis the
1293/// other from the y axis and the maximum distance is the average of the two maximum
1294/// distances obtained.
1295///
1296/// Code adapted by Rene Brun from original HBOOK routine HDIFF
1297
1298Double_t TH2::KolmogorovTest(const TH1 *h2, Option_t *option) const
1299{
1300 TString opt = option;
1301 opt.ToUpper();
1302
1303 Double_t prb = 0;
1304 TH1 *h1 = (TH1*)this;
1305 if (h2 == 0) return 0;
1306 const TAxis *xaxis1 = h1->GetXaxis();
1307 const TAxis *xaxis2 = h2->GetXaxis();
1308 const TAxis *yaxis1 = h1->GetYaxis();
1309 const TAxis *yaxis2 = h2->GetYaxis();
1310 Int_t ncx1 = xaxis1->GetNbins();
1311 Int_t ncx2 = xaxis2->GetNbins();
1312 Int_t ncy1 = yaxis1->GetNbins();
1313 Int_t ncy2 = yaxis2->GetNbins();
1314
1315 // Check consistency of dimensions
1316 if (h1->GetDimension() != 2 || h2->GetDimension() != 2) {
1317 Error("KolmogorovTest","Histograms must be 2-D\n");
1318 return 0;
1319 }
1320
1321 // Check consistency in number of channels
1322 if (ncx1 != ncx2) {
1323 Error("KolmogorovTest","Number of channels in X is different, %d and %d\n",ncx1,ncx2);
1324 return 0;
1325 }
1326 if (ncy1 != ncy2) {
1327 Error("KolmogorovTest","Number of channels in Y is different, %d and %d\n",ncy1,ncy2);
1328 return 0;
1329 }
1330
1331 // Check consistency in channel edges
1332 Bool_t afunc1 = kFALSE;
1333 Bool_t afunc2 = kFALSE;
1334 Double_t difprec = 1e-5;
1335 Double_t diff1 = TMath::Abs(xaxis1->GetXmin() - xaxis2->GetXmin());
1336 Double_t diff2 = TMath::Abs(xaxis1->GetXmax() - xaxis2->GetXmax());
1337 if (diff1 > difprec || diff2 > difprec) {
1338 Error("KolmogorovTest","histograms with different binning along X");
1339 return 0;
1340 }
1341 diff1 = TMath::Abs(yaxis1->GetXmin() - yaxis2->GetXmin());
1342 diff2 = TMath::Abs(yaxis1->GetXmax() - yaxis2->GetXmax());
1343 if (diff1 > difprec || diff2 > difprec) {
1344 Error("KolmogorovTest","histograms with different binning along Y");
1345 return 0;
1346 }
1347
1348 // Should we include Uflows, Oflows?
1349 Int_t ibeg = 1, jbeg = 1;
1350 Int_t iend = ncx1, jend = ncy1;
1351 if (opt.Contains("U")) {ibeg = 0; jbeg = 0;}
1352 if (opt.Contains("O")) {iend = ncx1+1; jend = ncy1+1;}
1353
1354 Int_t i,j;
1355 Double_t sum1 = 0;
1356 Double_t sum2 = 0;
1357 Double_t w1 = 0;
1358 Double_t w2 = 0;
1359 for (i = ibeg; i <= iend; i++) {
1360 for (j = jbeg; j <= jend; j++) {
1361 sum1 += h1->GetBinContent(i,j);
1362 sum2 += h2->GetBinContent(i,j);
1363 Double_t ew1 = h1->GetBinError(i,j);
1364 Double_t ew2 = h2->GetBinError(i,j);
1365 w1 += ew1*ew1;
1366 w2 += ew2*ew2;
1367
1368 }
1369 }
1370
1371 // Check that both scatterplots contain events
1372 if (sum1 == 0) {
1373 Error("KolmogorovTest","Integral is zero for h1=%s\n",h1->GetName());
1374 return 0;
1375 }
1376 if (sum2 == 0) {
1377 Error("KolmogorovTest","Integral is zero for h2=%s\n",h2->GetName());
1378 return 0;
1379 }
1380 // calculate the effective entries.
1381 // the case when errors are zero (w1 == 0 or w2 ==0) are equivalent to
1382 // compare to a function. In that case the rescaling is done only on sqrt(esum2) or sqrt(esum1)
1383 Double_t esum1 = 0, esum2 = 0;
1384 if (w1 > 0)
1385 esum1 = sum1 * sum1 / w1;
1386 else
1387 afunc1 = kTRUE; // use later for calculating z
1388
1389 if (w2 > 0)
1390 esum2 = sum2 * sum2 / w2;
1391 else
1392 afunc2 = kTRUE; // use later for calculating z
1393
1394 if (afunc2 && afunc1) {
1395 Error("KolmogorovTest","Errors are zero for both histograms\n");
1396 return 0;
1397 }
1398
1399 // Find first Kolmogorov distance
1400 Double_t s1 = 1/sum1;
1401 Double_t s2 = 1/sum2;
1402 Double_t dfmax1 = 0;
1403 Double_t rsum1=0, rsum2=0;
1404 for (i=ibeg;i<=iend;i++) {
1405 for (j=jbeg;j<=jend;j++) {
1406 rsum1 += s1*h1->GetBinContent(i,j);
1407 rsum2 += s2*h2->GetBinContent(i,j);
1408 dfmax1 = TMath::Max(dfmax1, TMath::Abs(rsum1-rsum2));
1409 }
1410 }
1411
1412 // Find second Kolmogorov distance
1413 Double_t dfmax2 = 0;
1414 rsum1=0, rsum2=0;
1415 for (j=jbeg;j<=jend;j++) {
1416 for (i=ibeg;i<=iend;i++) {
1417 rsum1 += s1*h1->GetBinContent(i,j);
1418 rsum2 += s2*h2->GetBinContent(i,j);
1419 dfmax2 = TMath::Max(dfmax2, TMath::Abs(rsum1-rsum2));
1420 }
1421 }
1422
1423 // Get Kolmogorov probability: use effective entries, esum1 or esum2, for normalizing it
1424 Double_t factnm;
1425 if (afunc1) factnm = TMath::Sqrt(esum2);
1426 else if (afunc2) factnm = TMath::Sqrt(esum1);
1427 else factnm = TMath::Sqrt(esum1*sum2/(esum1+esum2));
1428
1429 // take average of the two distances
1430 Double_t dfmax = 0.5*(dfmax1+dfmax2);
1431 Double_t z = dfmax*factnm;
1432
1433 prb = TMath::KolmogorovProb(z);
1434
1435 Double_t prb1 = 0, prb2 = 0;
1436 // option N to combine normalization makes sense if both afunc1 and afunc2 are false
1437 if (opt.Contains("N") && !(afunc1 || afunc2 ) ) {
1438 // Combine probabilities for shape and normalization
1439 prb1 = prb;
1440 Double_t d12 = esum1-esum2;
1441 Double_t chi2 = d12*d12/(esum1+esum2);
1442 prb2 = TMath::Prob(chi2,1);
1443 // see Eadie et al., section 11.6.2
1444 if (prb > 0 && prb2 > 0) prb = prb*prb2*(1-TMath::Log(prb*prb2));
1445 else prb = 0;
1446 }
1447
1448 // debug printout
1449 if (opt.Contains("D")) {
1450 printf(" Kolmo Prob h1 = %s, sum1=%g\n",h1->GetName(),sum1);
1451 printf(" Kolmo Prob h2 = %s, sum2=%g\n",h2->GetName(),sum2);
1452 printf(" Kolmo Probabil = %f, Max Dist = %g\n",prb,dfmax);
1453 if (opt.Contains("N"))
1454 printf(" Kolmo Probabil = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
1455 }
1456 // This numerical error condition should never occur:
1457 if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
1458 if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
1459
1460 if(opt.Contains("M")) return dfmax; // return average of max distance
1461
1462 return prb;
1463}
1464
1465
1466////////////////////////////////////////////////////////////////////////////////
1467/// Rebin only the X axis
1468/// see Rebin2D
1469
1470TH2 *TH2::RebinX(Int_t ngroup, const char *newname)
1471{
1472 return Rebin2D(ngroup, 1, newname);
1473}
1474
1475
1476////////////////////////////////////////////////////////////////////////////////
1477/// Rebin only the Y axis
1478/// see Rebin2D
1479
1480TH2 *TH2::RebinY(Int_t ngroup, const char *newname)
1481{
1482 return Rebin2D(1, ngroup, newname);
1483}
1484
1485////////////////////////////////////////////////////////////////////////////////
1486/// Override TH1::Rebin as TH2::RebinX
1487/// Rebinning in variable binning as for TH1 is not allowed
1488/// If a non-null pointer is given an error is flagged
1489/// see RebinX and Rebin2D
1490
1491TH2 * TH2::Rebin( Int_t ngroup, const char*newname, const Double_t *xbins)
1492{
1493 if (xbins != nullptr) {
1494 Error("Rebin","Rebinning a 2-d histogram into variable bins is not supported (it is possible only for 1-d histograms). Return a nullptr");
1495 return nullptr;
1496 }
1497 Info("Rebin","Rebinning only the x-axis. Use Rebin2D for rebinning both axes");
1498 return RebinX(ngroup, newname);
1499}
1500////////////////////////////////////////////////////////////////////////////////
1501/// Rebin this histogram grouping nxgroup/nygroup bins along the xaxis/yaxis together.
1502///
1503/// if newname is not blank a new temporary histogram hnew is created.
1504/// else the current histogram is modified (default)
1505/// The parameter nxgroup/nygroup indicate how many bins along the xaxis/yaxis of this
1506/// have to me merged into one bin of hnew
1507/// If the original histogram has errors stored (via Sumw2), the resulting
1508/// histograms has new errors correctly calculated.
1509///
1510/// examples: if hpxpy is an existing TH2 histogram with 40 x 40 bins
1511/// ~~~ {.cpp}
1512/// hpxpy->Rebin2D(); // merges two bins along the xaxis and yaxis in one in hpxpy
1513/// // Carefull: previous contents of hpxpy are lost
1514/// hpxpy->RebinX(5); //merges five bins along the xaxis in one in hpxpy
1515/// TH2 *hnew = hpxpy->RebinY(5,"hnew"); // creates a new histogram hnew
1516/// // merging 5 bins of h1 along the yaxis in one bin
1517/// ~~~
1518///
1519/// NOTE : If nxgroup/nygroup is not an exact divider of the number of bins,
1520/// along the xaxis/yaxis the top limit(s) of the rebinned histogram
1521/// is changed to the upper edge of the xbin=newxbins*nxgroup resp.
1522/// ybin=newybins*nygroup and the corresponding bins are added to
1523/// the overflow bin.
1524/// Statistics will be recomputed from the new bin contents.
1525
1526TH2 *TH2::Rebin2D(Int_t nxgroup, Int_t nygroup, const char *newname)
1527{
1528 Int_t nxbins = fXaxis.GetNbins();
1529 Int_t nybins = fYaxis.GetNbins();
1530 Int_t nx = nxbins + 2; // normal bins + underflow and overflow
1531 Int_t ny = nybins + 2;
1536
1537 if (GetDimension() != 2) {
1538 Error("Rebin2D", "Histogram must be TH2. This histogram has %d dimensions.", GetDimension());
1539 return 0;
1540 }
1541 if ((nxgroup <= 0) || (nxgroup > nxbins)) {
1542 Error("Rebin2D", "Illegal value of nxgroup=%d",nxgroup);
1543 return 0;
1544 }
1545 if ((nygroup <= 0) || (nygroup > nybins)) {
1546 Error("Rebin2D", "Illegal value of nygroup=%d",nygroup);
1547 return 0;
1548 }
1549
1550 Int_t newxbins = nxbins / nxgroup;
1551 Int_t newybins = nybins / nygroup;
1552 Int_t newnx = newxbins + 2; // regular bins + overflow / underflow
1553 Int_t newny = newybins + 2; // regular bins + overflow / underflow
1554
1555 // Save old bin contents into a new array
1556 Double_t *oldBins = new Double_t[fNcells];
1557 for (Int_t i = 0; i < fNcells; ++i) oldBins[i] = RetrieveBinContent(i);
1558
1559 Double_t* oldErrors = NULL;
1560 if (fSumw2.fN) {
1561 oldErrors = new Double_t[fNcells];
1562 for (Int_t i = 0; i < fNcells; ++i) oldErrors[i] = GetBinErrorSqUnchecked(i);
1563 }
1564
1565 // create a clone of the old histogram if newname is specified
1566 TH2* hnew = this;
1567 if (newname && strlen(newname)) {
1568 hnew = (TH2*)Clone();
1569 hnew->SetName(newname);
1570 }
1571
1572 bool resetStat = false;
1573
1574 // change axis specs and rebuild bin contents array
1575 if(newxbins * nxgroup != nxbins) {
1576 xmax = fXaxis.GetBinUpEdge(newxbins * nxgroup);
1577 resetStat = true; // stats must be reset because top bins will be moved to overflow bin
1578 }
1579 if(newybins * nygroup != nybins) {
1580 ymax = fYaxis.GetBinUpEdge(newybins * nygroup);
1581 resetStat = true; // stats must be reset because top bins will be moved to overflow bin
1582 }
1583
1584 // save the TAttAxis members (reset by SetBins) for x axis
1585 Int_t nXdivisions = fXaxis.GetNdivisions();
1586 Color_t xAxisColor = fXaxis.GetAxisColor();
1587 Color_t xLabelColor = fXaxis.GetLabelColor();
1588 Style_t xLabelFont = fXaxis.GetLabelFont();
1589 Float_t xLabelOffset = fXaxis.GetLabelOffset();
1590 Float_t xLabelSize = fXaxis.GetLabelSize();
1591 Float_t xTickLength = fXaxis.GetTickLength();
1592 Float_t xTitleOffset = fXaxis.GetTitleOffset();
1593 Float_t xTitleSize = fXaxis.GetTitleSize();
1594 Color_t xTitleColor = fXaxis.GetTitleColor();
1595 Style_t xTitleFont = fXaxis.GetTitleFont();
1596 // save the TAttAxis members (reset by SetBins) for y axis
1597 Int_t nYdivisions = fYaxis.GetNdivisions();
1598 Color_t yAxisColor = fYaxis.GetAxisColor();
1599 Color_t yLabelColor = fYaxis.GetLabelColor();
1600 Style_t yLabelFont = fYaxis.GetLabelFont();
1601 Float_t yLabelOffset = fYaxis.GetLabelOffset();
1602 Float_t yLabelSize = fYaxis.GetLabelSize();
1603 Float_t yTickLength = fYaxis.GetTickLength();
1604 Float_t yTitleOffset = fYaxis.GetTitleOffset();
1605 Float_t yTitleSize = fYaxis.GetTitleSize();
1606 Color_t yTitleColor = fYaxis.GetTitleColor();
1607 Style_t yTitleFont = fYaxis.GetTitleFont();
1608
1609
1610 // copy merged bin contents (ignore under/overflows)
1611 if (nxgroup != 1 || nygroup != 1) {
1612 if(fXaxis.GetXbins()->GetSize() > 0 || fYaxis.GetXbins()->GetSize() > 0){
1613 // variable bin sizes in x or y, don't treat both cases separately
1614 Double_t *xbins = new Double_t[newxbins + 1];
1615 for(Int_t i = 0; i <= newxbins; ++i) xbins[i] = fXaxis.GetBinLowEdge(1 + i * nxgroup);
1616 Double_t *ybins = new Double_t[newybins + 1];
1617 for(Int_t i = 0; i <= newybins; ++i) ybins[i] = fYaxis.GetBinLowEdge(1 + i * nygroup);
1618 hnew->SetBins(newxbins, xbins, newybins, ybins); // changes also errors array (if any)
1619 delete [] xbins;
1620 delete [] ybins;
1621 } else {
1622 hnew->SetBins(newxbins, xmin, xmax, newybins, ymin, ymax); //changes also errors array
1623 }
1624
1625 // (0, 0): x - underflow; y - underflow
1626 hnew->UpdateBinContent(0, oldBins[0]);
1627 if (oldErrors) hnew->fSumw2[0] = 0;
1628
1629 // (x, 0): x - regular / overflow; y - underflow
1630 for(Int_t binx = 1, oldbinx = 1; binx < newnx; ++binx, oldbinx += nxgroup){
1631 Double_t binContent = 0.0, binErrorSq = 0.0;
1632 for (Int_t i = 0; i < nxgroup && (oldbinx + i) < nx; ++i) {
1633 Int_t bin = oldbinx + i;
1634 binContent += oldBins[bin];
1635 if(oldErrors) binErrorSq += oldErrors[bin];
1636 }
1637 Int_t newbin = binx;
1638 hnew->UpdateBinContent(newbin, binContent);
1639 if (oldErrors) hnew->fSumw2[newbin] = binErrorSq;
1640 }
1641
1642 // (0, y): x - underflow; y - regular / overflow
1643 for(Int_t biny = 1, oldbiny = 1; biny < newny; ++biny, oldbiny += nygroup){
1644 Double_t binContent = 0.0, binErrorSq = 0.0;
1645 for (Int_t j = 0; j < nygroup && (oldbiny + j) < ny; ++j) {
1646 Int_t bin = (oldbiny + j) * nx;
1647 binContent += oldBins[bin];
1648 if(oldErrors) binErrorSq += oldErrors[bin];
1649 }
1650 Int_t newbin = biny * newnx;
1651 hnew->UpdateBinContent(newbin, binContent);
1652 if (oldErrors) hnew->fSumw2[newbin] = binErrorSq;
1653 }
1654
1655 // (x, y): x - regular / overflow; y - regular / overflow
1656 for (Int_t binx = 1, oldbinx = 1; binx < newnx; ++binx, oldbinx += nxgroup) {
1657 for (Int_t biny = 1, oldbiny = 1; biny < newny; ++biny, oldbiny += nygroup) {
1658 Double_t binContent = 0.0, binErrorSq = 0.0;
1659 for (Int_t i = 0; i < nxgroup && (oldbinx + i) < nx; ++i) {
1660 for (Int_t j = 0; j < nygroup && (oldbiny + j) < ny; ++j) {
1661 Int_t bin = oldbinx + i + (oldbiny + j) * nx;
1662 binContent += oldBins[bin];
1663 if (oldErrors) binErrorSq += oldErrors[bin];
1664 }
1665 }
1666 Int_t newbin = binx + biny * newnx;
1667 hnew->UpdateBinContent(newbin, binContent);
1668 if (oldErrors) hnew->fSumw2[newbin] = binErrorSq;
1669 }
1670 }
1671 }
1672
1673 // Restore x axis attributes
1674 fXaxis.SetNdivisions(nXdivisions);
1675 fXaxis.SetAxisColor(xAxisColor);
1676 fXaxis.SetLabelColor(xLabelColor);
1677 fXaxis.SetLabelFont(xLabelFont);
1678 fXaxis.SetLabelOffset(xLabelOffset);
1679 fXaxis.SetLabelSize(xLabelSize);
1680 fXaxis.SetTickLength(xTickLength);
1681 fXaxis.SetTitleOffset(xTitleOffset);
1682 fXaxis.SetTitleSize(xTitleSize);
1683 fXaxis.SetTitleColor(xTitleColor);
1684 fXaxis.SetTitleFont(xTitleFont);
1685 // Restore y axis attributes
1686 fYaxis.SetNdivisions(nYdivisions);
1687 fYaxis.SetAxisColor(yAxisColor);
1688 fYaxis.SetLabelColor(yLabelColor);
1689 fYaxis.SetLabelFont(yLabelFont);
1690 fYaxis.SetLabelOffset(yLabelOffset);
1691 fYaxis.SetLabelSize(yLabelSize);
1692 fYaxis.SetTickLength(yTickLength);
1693 fYaxis.SetTitleOffset(yTitleOffset);
1694 fYaxis.SetTitleSize(yTitleSize);
1695 fYaxis.SetTitleColor(yTitleColor);
1696 fYaxis.SetTitleFont(yTitleFont);
1697
1698 if (resetStat) hnew->ResetStats();
1699
1700 delete [] oldBins;
1701 if (oldErrors) delete [] oldErrors;
1702 return hnew;
1703}
1704
1705
1706////////////////////////////////////////////////////////////////////////////////
1707
1708TProfile *TH2::DoProfile(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
1709{
1710 TString opt = option;
1711 // extract cut infor
1712 TString cut;
1713 Int_t i1 = opt.Index("[");
1714 if (i1>=0) {
1715 Int_t i2 = opt.Index("]");
1716 cut = opt(i1,i2-i1+1);
1717 }
1718 opt.ToLower();
1719 bool originalRange = opt.Contains("o");
1720
1721 const TAxis& outAxis = ( onX ? fXaxis : fYaxis );
1722 const TAxis& inAxis = ( onX ? fYaxis : fXaxis );
1723 Int_t inN = inAxis.GetNbins();
1724 const char *expectedName = ( onX ? "_pfx" : "_pfy" );
1725
1726 // outer axis cannot be outside original axis (this fixes ROOT-8781)
1727 // and firstOutBin and lastOutBin cannot be both equal to zero
1728 Int_t firstOutBin = std::max(outAxis.GetFirst(),1);
1729 Int_t lastOutBin = std::min(outAxis.GetLast(),outAxis.GetNbins() ) ;
1730
1731 if ( lastbin < firstbin && inAxis.TestBit(TAxis::kAxisRange) ) {
1732 firstbin = inAxis.GetFirst();
1733 lastbin = inAxis.GetLast();
1734 // For special case of TAxis::SetRange, when first == 1 and last
1735 // = N and the range bit has been set, the TAxis will return 0
1736 // for both.
1737 if (firstbin == 0 && lastbin == 0)
1738 {
1739 firstbin = 1;
1740 lastbin = inAxis.GetNbins();
1741 }
1742 }
1743 if (firstbin < 0) firstbin = 1;
1744 if (lastbin < 0) lastbin = inN;
1745 if (lastbin > inN+1) lastbin = inN;
1746
1747 // Create the profile histogram
1748 char *pname = (char*)name;
1749 if (name && strcmp(name, expectedName) == 0) {
1750 Int_t nch = strlen(GetName()) + 5;
1751 pname = new char[nch];
1752 snprintf(pname,nch,"%s%s",GetName(),name);
1753 }
1754 TProfile *h1=0;
1755 //check if a profile with identical name exist
1756 // if compatible reset and re-use previous histogram
1757 TObject *h1obj = gROOT->FindObject(pname);
1758 if (h1obj && h1obj->InheritsFrom(TH1::Class())) {
1759 if (h1obj->IsA() != TProfile::Class() ) {
1760 Error("DoProfile","Histogram with name %s must be a TProfile and is a %s",name,h1obj->ClassName());
1761 return 0;
1762 }
1763 h1 = (TProfile*)h1obj;
1764 // reset the existing histogram and set always the new binning for the axis
1765 // This avoid problems when the histogram already exists and the histograms is rebinned or its range has changed
1766 // (see https://savannah.cern.ch/bugs/?94101 or https://savannah.cern.ch/bugs/?95808 )
1767 h1->Reset();
1768 const TArrayD *xbins = outAxis.GetXbins();
1769 if (xbins->fN == 0) {
1770 if ( originalRange )
1771 h1->SetBins(outAxis.GetNbins(),outAxis.GetXmin(),outAxis.GetXmax());
1772 else
1773 h1->SetBins(lastOutBin-firstOutBin+1,outAxis.GetBinLowEdge(firstOutBin),outAxis.GetBinUpEdge(lastOutBin));
1774 } else {
1775 // case variable bins
1776 if (originalRange )
1777 h1->SetBins(outAxis.GetNbins(),xbins->fArray);
1778 else
1779 h1->SetBins(lastOutBin-firstOutBin+1,&xbins->fArray[firstOutBin-1]);
1780 }
1781 }
1782
1783 Int_t ncuts = 0;
1784 if (opt.Contains("[")) {
1785 ((TH2 *)this)->GetPainter();
1786 if (fPainter) ncuts = fPainter->MakeCuts((char*)cut.Data());
1787 }
1788
1789 if (!h1) {
1790 const TArrayD *bins = outAxis.GetXbins();
1791 if (bins->fN == 0) {
1792 if ( originalRange )
1793 h1 = new TProfile(pname,GetTitle(),outAxis.GetNbins(),outAxis.GetXmin(),outAxis.GetXmax(),opt);
1794 else
1795 h1 = new TProfile(pname,GetTitle(),lastOutBin-firstOutBin+1,
1796 outAxis.GetBinLowEdge(firstOutBin),
1797 outAxis.GetBinUpEdge(lastOutBin), opt);
1798 } else {
1799 // case variable bins
1800 if (originalRange )
1801 h1 = new TProfile(pname,GetTitle(),outAxis.GetNbins(),bins->fArray,opt);
1802 else
1803 h1 = new TProfile(pname,GetTitle(),lastOutBin-firstOutBin+1,&bins->fArray[firstOutBin-1],opt);
1804 }
1805 }
1806 if (pname != name) delete [] pname;
1807
1808 // Copy attributes
1809 h1->GetXaxis()->ImportAttributes( &outAxis);
1810 h1->SetLineColor(this->GetLineColor());
1811 h1->SetFillColor(this->GetFillColor());
1812 h1->SetMarkerColor(this->GetMarkerColor());
1813 h1->SetMarkerStyle(this->GetMarkerStyle());
1814
1815 // check if histogram is weighted
1816 // in case need to store sum of weight square/bin for the profile
1817 TArrayD & binSumw2 = *(h1->GetBinSumw2());
1818 bool useWeights = (GetSumw2N() > 0);
1819 if (useWeights && (binSumw2.fN != h1->GetNcells()) ) h1->Sumw2();
1820 // we need to set this bit because we fill the profile using a single Fill for many entries
1821 // This is needed for the changes applied to make automatically the histogram weighted in ROOT 6 versions
1822 else h1->SetBit(TH1::kIsNotW);
1823
1824 // Fill the profile histogram
1825 // no entries/bin is available so can fill only using bin content as weight
1826 Double_t totcont = 0;
1827
1828 // implement filling of projected histogram
1829 // outbin is bin number of outAxis (the projected axis). Loop is done on all bin of TH2 histograms
1830 // inbin is the axis being integrated. Loop is done only on the selected bins
1831 for ( Int_t outbin = 0; outbin <= outAxis.GetNbins() + 1; ++outbin) {
1832 if (outAxis.TestBit(TAxis::kAxisRange) && ( outbin < firstOutBin || outbin > lastOutBin )) continue;
1833
1834 // find corresponding bin number in h1 for outbin (binOut)
1835 Double_t xOut = outAxis.GetBinCenter(outbin);
1836 Int_t binOut = h1->GetXaxis()->FindBin( xOut );
1837 if (binOut <0) continue;
1838
1839 for (Int_t inbin = firstbin ; inbin <= lastbin ; ++inbin) {
1840 Int_t binx, biny;
1841 if (onX) { binx = outbin; biny=inbin; }
1842 else { binx = inbin; biny=outbin; }
1843
1844 if (ncuts) {
1845 if (!fPainter->IsInside(binx,biny)) continue;
1846 }
1847 Int_t bin = GetBin(binx, biny);
1848 Double_t cxy = RetrieveBinContent(bin);
1849
1850
1851 if (cxy) {
1852 Double_t tmp = 0;
1853 // the following fill update wrongly the fBinSumw2- need to save it before
1854 if ( useWeights ) tmp = binSumw2.fArray[binOut];
1855 h1->Fill( xOut, inAxis.GetBinCenter(inbin), cxy );
1856 if ( useWeights ) binSumw2.fArray[binOut] = tmp + fSumw2.fArray[bin];
1857 totcont += cxy;
1858 }
1859
1860 }
1861 }
1862
1863 // the statistics must be recalculated since by using the Fill method the total sum of weight^2 is
1864 // not computed correctly
1865 // for a profile does not much sense to re-use statistics of original TH2
1866 h1->ResetStats();
1867 // Also we need to set the entries since they have not been correctly calculated during the projection
1868 // we can only set them to the effective entries
1870
1871
1872 if (opt.Contains("d")) {
1873 TVirtualPad *padsav = gPad;
1874 TVirtualPad *pad = gROOT->GetSelectedPad();
1875 if (pad) pad->cd();
1876 opt.Remove(opt.First("d"),1);
1877 if (!gPad || !gPad->FindObject(h1)) {
1878 h1->Draw(opt);
1879 } else {
1880 h1->Paint(opt);
1881 }
1882 if (padsav) padsav->cd();
1883 }
1884 return h1;
1885}
1886
1887
1888////////////////////////////////////////////////////////////////////////////////
1889/// Project a 2-D histogram into a profile histogram along X.
1890///
1891/// The projection is made from the channels along the Y axis
1892/// ranging from firstybin to lastybin included.
1893/// By default, bins 1 to ny are included
1894/// When all bins are included, the number of entries in the projection
1895/// is set to the number of entries of the 2-D histogram, otherwise
1896/// the number of entries is incremented by 1 for all non empty cells.
1897///
1898/// if option "d" is specified, the profile is drawn in the current pad.
1899///
1900/// if option "o" original axis range of the target axes will be
1901/// kept, but only bins inside the selected range will be filled.
1902///
1903/// The option can also be used to specify the projected profile error type.
1904/// Values which can be used are 's', 'i', or 'g'. See TProfile::BuildOptions for details
1905///
1906/// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
1907/// One must create a graphical cut (mouse or C++) and specify the name
1908/// of the cut between [] in the option.
1909/// For example, with a TCutG named "cutg", one can call:
1910/// myhist->ProfileX(" ",firstybin,lastybin,"[cutg]");
1911/// To invert the cut, it is enough to put a "-" in front of its name:
1912/// myhist->ProfileX(" ",firstybin,lastybin,"[-cutg]");
1913/// It is possible to apply several cuts ("," means logical AND):
1914/// myhist->ProfileX(" ",firstybin,lastybin,"[cutg1,cutg2]");
1915///
1916/// NOTE that if a TProfile named "name" exists in the current directory or pad with
1917/// a compatible axis the profile is reset and filled again with the projected contents of the TH2.
1918/// In the case of axis incompatibility an error is reported and a NULL pointer is returned.
1919///
1920/// NOTE that the X axis attributes of the TH2 are copied to the X axis of the profile.
1921///
1922/// NOTE that the default under- / overflow behavior differs from what ProjectionX
1923/// does! Profiles take the bin center into account, so here the under- and overflow
1924/// bins are ignored by default.
1925///
1926/// NOTE that the return profile histogram is computed using the Y bin center values instead of
1927/// the real Y values which are used to fill the 2d histogram. Therefore the obtained profile is just an approximation of the
1928/// correct profile histogram that would be obtained when filling it directly with the original data (see ROOT-7770)
1929
1930
1931TProfile *TH2::ProfileX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
1932{
1933 return DoProfile(true, name, firstybin, lastybin, option);
1934
1935}
1936
1937
1938////////////////////////////////////////////////////////////////////////////////
1939/// Project a 2-D histogram into a profile histogram along Y.
1940///
1941/// The projection is made from the channels along the X axis
1942/// ranging from firstxbin to lastxbin included.
1943/// By default, bins 1 to nx are included
1944/// When all bins are included, the number of entries in the projection
1945/// is set to the number of entries of the 2-D histogram, otherwise
1946/// the number of entries is incremented by 1 for all non empty cells.
1947///
1948/// if option "d" is specified, the profile is drawn in the current pad.
1949///
1950/// if option "o" , the original axis range of the target axis will be
1951/// kept, but only bins inside the selected range will be filled.
1952///
1953/// The option can also be used to specify the projected profile error type.
1954/// Values which can be used are 's', 'i', or 'g'. See TProfile::BuildOptions for details
1955/// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
1956///
1957/// One must create a graphical cut (mouse or C++) and specify the name
1958/// of the cut between [] in the option.
1959/// For example, with a TCutG named "cutg", one can call:
1960/// myhist->ProfileY(" ",firstybin,lastybin,"[cutg]");
1961/// To invert the cut, it is enough to put a "-" in front of its name:
1962/// myhist->ProfileY(" ",firstybin,lastybin,"[-cutg]");
1963/// It is possible to apply several cuts:
1964/// myhist->ProfileY(" ",firstybin,lastybin,"[cutg1,cutg2]");
1965///
1966/// NOTE that if a TProfile named "name" exists in the current directory or pad with
1967/// a compatible axis the profile is reset and filled again with the projected contents of the TH2.
1968/// In the case of axis incompatibility an error is reported and a NULL pointer is returned.
1969///
1970/// NOTE that the Y axis attributes of the TH2 are copied to the X axis of the profile.
1971///
1972/// NOTE that the default under- / overflow behavior differs from what ProjectionX
1973/// does! Profiles take the bin center into account, so here the under- and overflow
1974/// bins are ignored by default.
1975///
1976/// NOTE that the return profile histogram is computed using the X bin center values instead of
1977/// the real X values which are used to fill the 2d histogram. Therefore the obtained profile is just an approximation of the
1978/// correct profile histogram that would be obtained when filling it directly with the original data (see ROOT-7770)
1979
1980
1981TProfile *TH2::ProfileY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
1982{
1983 return DoProfile(false, name, firstxbin, lastxbin, option);
1984}
1985
1986
1987////////////////////////////////////////////////////////////////////////////////
1988/// Internal (protected) method for performing projection on the X or Y axis
1989/// called by ProjectionX or ProjectionY
1990
1991TH1D *TH2::DoProjection(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
1992{
1993 const char *expectedName = 0;
1994 Int_t inNbin;
1995 const TAxis* outAxis;
1996 const TAxis* inAxis;
1997
1998 TString opt = option;
1999 TString cut;
2000 Int_t i1 = opt.Index("[");
2001 if (i1>=0) {
2002 Int_t i2 = opt.Index("]");
2003 cut = opt(i1,i2-i1+1);
2004 }
2005 opt.ToLower(); //must be called after having parsed the cut name
2006 bool originalRange = opt.Contains("o");
2007
2008 if ( onX )
2009 {
2010 expectedName = "_px";
2011 inNbin = fYaxis.GetNbins();
2012 outAxis = GetXaxis();
2013 inAxis = GetYaxis();
2014 }
2015 else
2016 {
2017 expectedName = "_py";
2018 inNbin = fXaxis.GetNbins();
2019 outAxis = GetYaxis();
2020 inAxis = GetXaxis();
2021 }
2022
2023 // outer axis cannot be outside original axis (this fixes ROOT-8781)
2024 // and firstOutBin and lastOutBin cannot be both equal to zero
2025 Int_t firstOutBin = std::max(outAxis->GetFirst(),1);
2026 Int_t lastOutBin = std::min(outAxis->GetLast(),outAxis->GetNbins() ) ;
2027
2028 if ( lastbin < firstbin && inAxis->TestBit(TAxis::kAxisRange) ) {
2029 firstbin = inAxis->GetFirst();
2030 lastbin = inAxis->GetLast();
2031 // For special case of TAxis::SetRange, when first == 1 and last
2032 // = N and the range bit has been set, the TAxis will return 0
2033 // for both.
2034 if (firstbin == 0 && lastbin == 0)
2035 {
2036 firstbin = 1;
2037 lastbin = inAxis->GetNbins();
2038 }
2039 }
2040 if (firstbin < 0) firstbin = 0;
2041 if (lastbin < 0) lastbin = inNbin + 1;
2042 if (lastbin > inNbin+1) lastbin = inNbin + 1;
2043
2044 // Create the projection histogram
2045 char *pname = (char*)name;
2046 if (name && strcmp(name,expectedName) == 0) {
2047 Int_t nch = strlen(GetName()) + 4;
2048 pname = new char[nch];
2049 snprintf(pname,nch,"%s%s",GetName(),name);
2050 }
2051 TH1D *h1=0;
2052 //check if histogram with identical name exist
2053 // if compatible reset and re-use previous histogram
2054 // (see https://savannah.cern.ch/bugs/?54340)
2055 TObject *h1obj = gROOT->FindObject(pname);
2056 if (h1obj && h1obj->InheritsFrom(TH1::Class())) {
2057 if (h1obj->IsA() != TH1D::Class() ) {
2058 Error("DoProjection","Histogram with name %s must be a TH1D and is a %s",name,h1obj->ClassName());
2059 return 0;
2060 }
2061 h1 = (TH1D*)h1obj;
2062 // reset the existing histogram and set always the new binning for the axis
2063 // This avoid problems when the histogram already exists and the histograms is rebinned or its range has changed
2064 // (see https://savannah.cern.ch/bugs/?94101 or https://savannah.cern.ch/bugs/?95808 )
2065 h1->Reset();
2066 const TArrayD *xbins = outAxis->GetXbins();
2067 if (xbins->fN == 0) {
2068 if ( originalRange )
2069 h1->SetBins(outAxis->GetNbins(),outAxis->GetXmin(),outAxis->GetXmax());
2070 else
2071 h1->SetBins(lastOutBin-firstOutBin+1,outAxis->GetBinLowEdge(firstOutBin),outAxis->GetBinUpEdge(lastOutBin));
2072 } else {
2073 // case variable bins
2074 if (originalRange )
2075 h1->SetBins(outAxis->GetNbins(),xbins->fArray);
2076 else
2077 h1->SetBins(lastOutBin-firstOutBin+1,&xbins->fArray[firstOutBin-1]);
2078 }
2079 }
2080
2081 Int_t ncuts = 0;
2082 if (opt.Contains("[")) {
2083 ((TH2 *)this)->GetPainter();
2084 if (fPainter) ncuts = fPainter->MakeCuts((char*)cut.Data());
2085 }
2086
2087 if (!h1) {
2088 const TArrayD *bins = outAxis->GetXbins();
2089 if (bins->fN == 0) {
2090 if ( originalRange )
2091 h1 = new TH1D(pname,GetTitle(),outAxis->GetNbins(),outAxis->GetXmin(),outAxis->GetXmax());
2092 else
2093 h1 = new TH1D(pname,GetTitle(),lastOutBin-firstOutBin+1,
2094 outAxis->GetBinLowEdge(firstOutBin),outAxis->GetBinUpEdge(lastOutBin));
2095 } else {
2096 // case variable bins
2097 if (originalRange )
2098 h1 = new TH1D(pname,GetTitle(),outAxis->GetNbins(),bins->fArray);
2099 else
2100 h1 = new TH1D(pname,GetTitle(),lastOutBin-firstOutBin+1,&bins->fArray[firstOutBin-1]);
2101 }
2102 if (opt.Contains("e") || GetSumw2N() ) h1->Sumw2();
2103 }
2104 if (pname != name) delete [] pname;
2105
2106 // Copy the axis attributes and the axis labels if needed.
2107 h1->GetXaxis()->ImportAttributes(outAxis);
2108 THashList* labels=outAxis->GetLabels();
2109 if (labels) {
2110 TIter iL(labels);
2111 TObjString* lb;
2112 Int_t i = 1;
2113 while ((lb=(TObjString*)iL())) {
2114 h1->GetXaxis()->SetBinLabel(i,lb->String().Data());
2115 i++;
2116 }
2117 }
2118
2119 h1->SetLineColor(this->GetLineColor());
2120 h1->SetFillColor(this->GetFillColor());
2121 h1->SetMarkerColor(this->GetMarkerColor());
2122 h1->SetMarkerStyle(this->GetMarkerStyle());
2123
2124 // Fill the projected histogram
2125 Double_t cont,err2;
2126 Double_t totcont = 0;
2127 Bool_t computeErrors = h1->GetSumw2N();
2128
2129 // implement filling of projected histogram
2130 // outbin is bin number of outAxis (the projected axis). Loop is done on all bin of TH2 histograms
2131 // inbin is the axis being integrated. Loop is done only on the selected bins
2132 for ( Int_t outbin = 0; outbin <= outAxis->GetNbins() + 1; ++outbin) {
2133 err2 = 0;
2134 cont = 0;
2135 if (outAxis->TestBit(TAxis::kAxisRange) && ( outbin < firstOutBin || outbin > lastOutBin )) continue;
2136
2137 for (Int_t inbin = firstbin ; inbin <= lastbin ; ++inbin) {
2138 Int_t binx, biny;
2139 if (onX) { binx = outbin; biny=inbin; }
2140 else { binx = inbin; biny=outbin; }
2141
2142 if (ncuts) {
2143 if (!fPainter->IsInside(binx,biny)) continue;
2144 }
2145 // sum bin content and error if needed
2146 cont += GetBinContent(binx,biny);
2147 if (computeErrors) {
2148 Double_t exy = GetBinError(binx,biny);
2149 err2 += exy*exy;
2150 }
2151 }
2152 // find corresponding bin number in h1 for outbin
2153 Int_t binOut = h1->GetXaxis()->FindBin( outAxis->GetBinCenter(outbin) );
2154 h1->SetBinContent(binOut ,cont);
2155 if (computeErrors) h1->SetBinError(binOut,TMath::Sqrt(err2));
2156 // sum all content
2157 totcont += cont;
2158 }
2159
2160 // check if we can re-use the original statistics from the previous histogram
2161 bool reuseStats = false;
2162 if ( ( GetStatOverflowsBehaviour() == false && firstbin == 1 && lastbin == inNbin ) ||
2163 ( GetStatOverflowsBehaviour() == true && firstbin == 0 && lastbin == inNbin + 1 ) )
2164 reuseStats = true;
2165 else {
2166 // also if total content match we can re-use
2167 double eps = 1.E-12;
2168 if (IsA() == TH2F::Class() ) eps = 1.E-6;
2169 if (fTsumw != 0 && TMath::Abs( fTsumw - totcont) < TMath::Abs(fTsumw) * eps)
2170 reuseStats = true;
2171 }
2172 if (ncuts) reuseStats = false;
2173 // retrieve the statistics and set in projected histogram if we can re-use it
2174 bool reuseEntries = reuseStats;
2175 // can re-use entries if underflow/overflow are included
2176 reuseEntries &= (firstbin==0 && lastbin == inNbin+1);
2177 if (reuseStats) {
2178 Double_t stats[kNstat];
2179 GetStats(stats);
2180 if (!onX) { // case of projection on Y
2181 stats[2] = stats[4];
2182 stats[3] = stats[5];
2183 }
2184 h1->PutStats(stats);
2185 }
2186 else {
2187 // the statistics is automatically recalculated since it is reset by the call to SetBinContent
2188 // we just need to set the entries since they have not been correctly calculated during the projection
2189 // we can only set them to the effective entries
2191 }
2192 if (reuseEntries) {
2194 }
2195 else {
2196 // re-compute the entries
2197 // in case of error calculation (i.e. when Sumw2() is set)
2198 // use the effective entries for the entries
2199 // since this is the only way to estimate them
2200 Double_t entries = TMath::Floor( totcont + 0.5); // to avoid numerical rounding
2201 if (h1->GetSumw2N()) entries = h1->GetEffectiveEntries();
2202 h1->SetEntries( entries );
2203 }
2204
2205 if (opt.Contains("d")) {
2206 TVirtualPad *padsav = gPad;
2207 TVirtualPad *pad = gROOT->GetSelectedPad();
2208 if (pad) pad->cd();
2209 opt.Remove(opt.First("d"),1);
2210 // remove also other options
2211 if (opt.Contains("e")) opt.Remove(opt.First("e"),1);
2212 if (!gPad || !gPad->FindObject(h1)) {
2213 h1->Draw(opt);
2214 } else {
2215 h1->Paint(opt);
2216 }
2217 if (padsav) padsav->cd();
2218 }
2219
2220 return h1;
2221}
2222
2223
2224////////////////////////////////////////////////////////////////////////////////
2225/// Project a 2-D histogram into a 1-D histogram along X.
2226///
2227/// The projection is always of the type TH1D.
2228/// The projection is made from the channels along the Y axis
2229/// ranging from firstybin to lastybin included.
2230/// By default, all bins including under- and overflow are included.
2231/// The number of entries in the projection is estimated from the
2232/// number of effective entries for all the cells included in the projection.
2233///
2234/// To exclude the underflow bins in Y, use firstybin=1.
2235/// To exclude the overflow bins in Y, use lastybin=nx.
2236///
2237/// if option "e" is specified, the errors are computed.
2238/// if option "d" is specified, the projection is drawn in the current pad.
2239/// if option "o" original axis range of the taget axes will be
2240/// kept, but only bins inside the selected range will be filled.
2241///
2242/// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
2243/// One must create a graphical cut (mouse or C++) and specify the name
2244/// of the cut between [] in the option.
2245/// For example, with a TCutG named "cutg", one can call:
2246/// myhist->ProjectionX(" ",firstybin,lastybin,"[cutg]");
2247/// To invert the cut, it is enough to put a "-" in front of its name:
2248/// myhist->ProjectionX(" ",firstybin,lastybin,"[-cutg]");
2249/// It is possible to apply several cuts:
2250/// myhist->ProjectionX(" ",firstybin,lastybin,"[cutg1,cutg2]");
2251///
2252/// NOTE that if a TH1D named "name" exists in the current directory or pad
2253/// the histogram is reset and filled again with the projected contents of the TH2.
2254///
2255/// NOTE that the X axis attributes of the TH2 are copied to the X axis of the projection.
2256
2257TH1D *TH2::ProjectionX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
2258{
2259 return DoProjection(true, name, firstybin, lastybin, option);
2260}
2261
2262
2263////////////////////////////////////////////////////////////////////////////////
2264/// Project a 2-D histogram into a 1-D histogram along Y.
2265///
2266/// The projection is always of the type TH1D.
2267/// The projection is made from the channels along the X axis
2268/// ranging from firstxbin to lastxbin included.
2269/// By default, all bins including under- and overflow are included.
2270/// The number of entries in the projection is estimated from the
2271/// number of effective entries for all the cells included in the projection
2272///
2273/// To exclude the underflow bins in X, use firstxbin=1.
2274/// To exclude the overflow bins in X, use lastxbin=nx.
2275///
2276/// if option "e" is specified, the errors are computed.
2277/// if option "d" is specified, the projection is drawn in the current pad.
2278/// if option "o" original axis range of the taget axes will be
2279/// kept, but only bins inside the selected range will be filled.
2280///
2281/// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
2282/// One must create a graphical cut (mouse or C++) and specify the name
2283/// of the cut between [] in the option.
2284/// For example, with a TCutG named "cutg", one can call:
2285/// myhist->ProjectionY(" ",firstxbin,lastxbin,"[cutg]");
2286/// To invert the cut, it is enough to put a "-" in front of its name:
2287/// myhist->ProjectionY(" ",firstxbin,lastxbin,"[-cutg]");
2288/// It is possible to apply several cuts:
2289/// myhist->ProjectionY(" ",firstxbin,lastxbin,"[cutg1,cutg2]");
2290///
2291/// NOTE that if a TH1D named "name" exists in the current directory or pad and having
2292/// a compatible axis, the histogram is reset and filled again with the projected contents of the TH2.
2293/// In the case of axis incompatibility, an error is reported and a NULL pointer is returned.
2294///
2295/// NOTE that the Y axis attributes of the TH2 are copied to the X axis of the projection.
2296
2297TH1D *TH2::ProjectionY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
2298{
2299 return DoProjection(false, name, firstxbin, lastxbin, option);
2300}
2301
2302
2303////////////////////////////////////////////////////////////////////////////////
2304/// Replace current statistics with the values in array stats
2305
2307{
2308 TH1::PutStats(stats);
2309 fTsumwy = stats[4];
2310 fTsumwy2 = stats[5];
2311 fTsumwxy = stats[6];
2312}
2313
2314
2315////////////////////////////////////////////////////////////////////////////////
2316/// Compute the X distribution of quantiles in the other variable Y
2317/// name is the name of the returned histogram
2318/// prob is the probability content for the quantile (0.5 is the default for the median)
2319/// An approximate error for the quantile is computed assuming that the distribution in
2320/// the other variable is normal. According to this approximate formula the error on the quantile is
2321/// estimated as sqrt( p (1-p) / ( n * f(q)^2) ), where p is the probability content of the quantile and
2322/// n is the number of events used to compute the quantile and f(q) is the probability distribution for the
2323/// other variable evaluated at the obtained quantile. In the error estimation the probability is then assumed to be
2324/// a normal distribution.
2325
2326TH1D* TH2::QuantilesX( Double_t prob, const char * name) const
2327{
2328 return DoQuantiles(true, name, prob);
2329}
2330
2331
2332////////////////////////////////////////////////////////////////////////////////
2333/// Compute the Y distribution of quantiles in the other variable X
2334/// name is the name of the returned histogram
2335/// prob is the probability content for the quantile (0.5 is the default for the median)
2336/// An approximate error for the quantile is computed assuming that the distribution in
2337/// the other variable is normal.
2338
2339TH1D* TH2::QuantilesY( Double_t prob, const char * name) const
2340{
2341 return DoQuantiles(false, name, prob);
2342}
2343
2344
2345////////////////////////////////////////////////////////////////////////////////
2346/// Implementation of quantiles for x or y
2347
2348TH1D* TH2::DoQuantiles(bool onX, const char * name, Double_t prob) const
2349{
2350 const TAxis *outAxis = 0;
2351 const TAxis *inAxis = 0;
2352 if ( onX ) {
2353 outAxis = GetXaxis();
2354 inAxis = GetYaxis();
2355 } else {
2356 outAxis = GetYaxis();
2357 inAxis = GetXaxis();
2358 }
2359
2360 // build first name of returned histogram
2361 TString qname = name;
2362 if (qname.IsNull() || qname == "_qx" || qname == "_qy") {
2363 const char * qtype = (onX) ? "qx" : "qy";
2364 qname = TString::Format("%s_%s_%3.2f",GetName(),qtype, prob);
2365 }
2366 // check if the histogram is already existing
2367 TH1D *h1=0;
2368 //check if histogram with identical name exist
2369 TObject *h1obj = gROOT->FindObject(qname);
2370 if (h1obj) {
2371 h1 = dynamic_cast<TH1D*>(h1obj);
2372 if (!h1) {
2373 Error("DoQuantiles","Histogram with name %s must be a TH1D and is a %s",qname.Data(),h1obj->ClassName());
2374 return 0;
2375 }
2376 }
2377 if (h1) {
2378 h1->Reset();
2379 } else {
2380 // create the histogram
2381 h1 = new TH1D(qname, GetTitle(), 1, 0, 1);
2382 }
2383 // set the bin content
2384 Int_t firstOutBin = std::max(outAxis->GetFirst(),1);
2385 Int_t lastOutBin = std::max(outAxis->GetLast(),outAxis->GetNbins());
2386 const TArrayD *xbins = outAxis->GetXbins();
2387 if (xbins->fN == 0)
2388 h1->SetBins(lastOutBin-firstOutBin+1,outAxis->GetBinLowEdge(firstOutBin),outAxis->GetBinUpEdge(lastOutBin));
2389 else
2390 h1->SetBins(lastOutBin-firstOutBin+1,&xbins->fArray[firstOutBin-1]);
2391
2392 // set the bin content of the histogram
2393 Double_t pp[1];
2394 pp[0] = prob;
2395
2396 TH1D * slice = 0;
2397 for (int ibin = inAxis->GetFirst() ; ibin <= inAxis->GetLast() ; ++ibin) {
2398 Double_t qq[1];
2399 // do a projection on the opposite axis
2400 slice = DoProjection(!onX, "tmp",ibin,ibin,"");
2401 if (!slice) break;
2402 if (slice->GetSum() == 0) continue;
2403 slice->GetQuantiles(1,qq,pp);
2404 h1->SetBinContent(ibin,qq[0]);
2405 // compute error using normal approximation
2406 // quantile error ~ sqrt (q*(1-q)/ *( n * f(xq)^2 ) from Kendall
2407 // where f(xq) is the p.d.f value at the quantile xq
2408 Double_t n = slice->GetEffectiveEntries();
2409 Double_t f = TMath::Gaus(qq[0], slice->GetMean(), slice->GetStdDev(), kTRUE);
2410 Double_t error = 0;
2411 // set the errors to zero in case of small statistics
2412 if (f > 0 && n > 1)
2413 error = TMath::Sqrt( prob*(1.-prob)/ (n * f * f) );
2414 h1->SetBinError(ibin, error);
2415 }
2416 if (slice) delete slice;
2417 return h1;
2418}
2419
2420
2421////////////////////////////////////////////////////////////////////////////////
2422/// Reset this histogram: contents, errors, etc.
2423
2425{
2426 TH1::Reset(option);
2427 TString opt = option;
2428 opt.ToUpper();
2429
2430 if (opt.Contains("ICE") && !opt.Contains("S")) return;
2431 fTsumwy = 0;
2432 fTsumwy2 = 0;
2433 fTsumwxy = 0;
2434}
2435
2436
2437////////////////////////////////////////////////////////////////////////////////
2438/// Set bin content
2439
2441{
2442 fEntries++;
2443 fTsumw = 0;
2444 if (bin < 0) return;
2445 if (bin >= fNcells) return;
2446 UpdateBinContent(bin, content);
2447}
2448
2449
2450////////////////////////////////////////////////////////////////////////////////
2451/// When the mouse is moved in a pad containing a 2-d view of this histogram
2452/// a second canvas shows the projection along X corresponding to the
2453/// mouse position along Y.
2454/// To stop the generation of the projections, delete the canvas
2455/// containing the projection.
2456
2458{
2459 GetPainter();
2460
2461 if (fPainter) fPainter->SetShowProjection("x",nbins);
2462}
2463
2464
2465////////////////////////////////////////////////////////////////////////////////
2466/// When the mouse is moved in a pad containing a 2-d view of this histogram
2467/// a second canvas shows the projection along Y corresponding to the
2468/// mouse position along X.
2469/// To stop the generation of the projections, delete the canvas
2470/// containing the projection.
2471
2473{
2474 GetPainter();
2475
2476 if (fPainter) fPainter->SetShowProjection("y",nbins);
2477}
2478
2479
2480////////////////////////////////////////////////////////////////////////////////
2481/// This function calculates the background spectrum in this histogram.
2482/// The background is returned as a histogram.
2483/// to be implemented (may be)
2484
2486{
2487
2488 return (TH1*)gROOT->ProcessLineFast(Form("TSpectrum2::StaticBackground((TH1*)0x%lx,%d,\"%s\")",
2489 (ULong_t)this, niter, option));
2490}
2491
2492
2493////////////////////////////////////////////////////////////////////////////////
2494///Interface to TSpectrum2::Search
2495///the function finds peaks in this histogram where the width is > sigma
2496///and the peak maximum greater than threshold*maximum bin content of this.
2497///for more details see TSpectrum::Search.
2498///note the difference in the default value for option compared to TSpectrum2::Search
2499///option="" by default (instead of "goff")
2500
2502{
2503
2504 return (Int_t)gROOT->ProcessLineFast(Form("TSpectrum2::StaticSearch((TH1*)0x%lx,%g,\"%s\",%g)",
2505 (ULong_t)this, sigma, option, threshold));
2506}
2507
2508
2509////////////////////////////////////////////////////////////////////////////////
2510/// Smooth bin contents of this 2-d histogram using kernel algorithms
2511/// similar to the ones used in the raster graphics community.
2512/// Bin contents in the active range are replaced by their smooth values.
2513/// If Errors are defined via Sumw2, they are also scaled and computed.
2514/// However, note the resulting errors will be correlated between different-bins, so
2515/// the errors should not be used blindly to perform any calculation involving several bins,
2516/// like fitting the histogram. One would need to compute also the bin by bin correlation matrix.
2517///
2518/// 3 kernels are proposed k5a, k5b and k3a.
2519/// k5a and k5b act on 5x5 cells (i-2,i-1,i,i+1,i+2, and same for j)
2520/// k5b is a bit more stronger in smoothing
2521/// k3a acts only on 3x3 cells (i-1,i,i+1, and same for j).
2522/// By default the kernel "k5a" is used. You can select the kernels "k5b" or "k3a"
2523/// via the option argument.
2524/// If TAxis::SetRange has been called on the x or/and y axis, only the bins
2525/// in the specified range are smoothed.
2526/// In the current implementation if the first argument is not used (default value=1).
2527///
2528/// implementation by David McKee (dmckee@bama.ua.edu). Extended by Rene Brun
2529
2530void TH2::Smooth(Int_t ntimes, Option_t *option)
2531{
2532 Double_t k5a[5][5] = { { 0, 0, 1, 0, 0 },
2533 { 0, 2, 2, 2, 0 },
2534 { 1, 2, 5, 2, 1 },
2535 { 0, 2, 2, 2, 0 },
2536 { 0, 0, 1, 0, 0 } };
2537 Double_t k5b[5][5] = { { 0, 1, 2, 1, 0 },
2538 { 1, 2, 4, 2, 1 },
2539 { 2, 4, 8, 4, 2 },
2540 { 1, 2, 4, 2, 1 },
2541 { 0, 1, 2, 1, 0 } };
2542 Double_t k3a[3][3] = { { 0, 1, 0 },
2543 { 1, 2, 1 },
2544 { 0, 1, 0 } };
2545
2546 if (ntimes > 1) {
2547 Warning("Smooth","Currently only ntimes=1 is supported");
2548 }
2549 TString opt = option;
2550 opt.ToLower();
2551 Int_t ksize_x=5;
2552 Int_t ksize_y=5;
2553 Double_t *kernel = &k5a[0][0];
2554 if (opt.Contains("k5b")) kernel = &k5b[0][0];
2555 if (opt.Contains("k3a")) {
2556 kernel = &k3a[0][0];
2557 ksize_x=3;
2558 ksize_y=3;
2559 }
2560
2561 // find i,j ranges
2562 Int_t ifirst = fXaxis.GetFirst();
2563 Int_t ilast = fXaxis.GetLast();
2564 Int_t jfirst = fYaxis.GetFirst();
2565 Int_t jlast = fYaxis.GetLast();
2566
2567 // Determine the size of the bin buffer(s) needed
2569 Int_t nx = GetNbinsX();
2570 Int_t ny = GetNbinsY();
2571 Int_t bufSize = (nx+2)*(ny+2);
2572 Double_t *buf = new Double_t[bufSize];
2573 Double_t *ebuf = 0;
2574 if (fSumw2.fN) ebuf = new Double_t[bufSize];
2575
2576 // Copy all the data to the temporary buffers
2577 Int_t i,j,bin;
2578 for (i=ifirst; i<=ilast; i++){
2579 for (j=jfirst; j<=jlast; j++){
2580 bin = GetBin(i,j);
2581 buf[bin] = RetrieveBinContent(bin);
2582 if (ebuf) ebuf[bin]=GetBinError(bin);
2583 }
2584 }
2585
2586 // Kernel tail sizes (kernel sizes must be odd for this to work!)
2587 Int_t x_push = (ksize_x-1)/2;
2588 Int_t y_push = (ksize_y-1)/2;
2589
2590 // main work loop
2591 for (i=ifirst; i<=ilast; i++){
2592 for (j=jfirst; j<=jlast; j++) {
2593 Double_t content = 0.0;
2594 Double_t error = 0.0;
2595 Double_t norm = 0.0;
2596
2597 for (Int_t n=0; n<ksize_x; n++) {
2598 for (Int_t m=0; m<ksize_y; m++) {
2599 Int_t xb = i+(n-x_push);
2600 Int_t yb = j+(m-y_push);
2601 if ( (xb >= 1) && (xb <= nx) && (yb >= 1) && (yb <= ny) ) {
2602 bin = GetBin(xb,yb);
2603 Double_t k = kernel[n*ksize_y +m];
2604 //if ( (k != 0.0 ) && (buf[bin] != 0.0) ) { // General version probably does not want the second condition
2605 if ( k != 0.0 ) {
2606 norm += k;
2607 content += k*buf[bin];
2608 if (ebuf) error += k*k*ebuf[bin]*ebuf[bin];
2609 }
2610 }
2611 }
2612 }
2613
2614 if ( norm != 0.0 ) {
2615 SetBinContent(i,j,content/norm);
2616 if (ebuf) {
2617 error /= (norm*norm);
2618 SetBinError(i,j,sqrt(error));
2619 }
2620 }
2621 }
2622 }
2624
2625 delete [] buf;
2626 delete [] ebuf;
2627}
2628
2629
2630////////////////////////////////////////////////////////////////////////////////
2631/// Stream an object of class TH2.
2632
2633void TH2::Streamer(TBuffer &R__b)
2634{
2635 if (R__b.IsReading()) {
2636 UInt_t R__s, R__c;
2637 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
2638 if (R__v > 2) {
2639 R__b.ReadClassBuffer(TH2::Class(), this, R__v, R__s, R__c);
2640 return;
2641 }
2642 //====process old versions before automatic schema evolution
2643 TH1::Streamer(R__b);
2644 R__b >> fScalefactor;
2645 R__b >> fTsumwy;
2646 R__b >> fTsumwy2;
2647 R__b >> fTsumwxy;
2648 //====end of old versions
2649
2650 } else {
2651 R__b.WriteClassBuffer(TH2::Class(),this);
2652 }
2653}
2654
2655
2656//______________________________________________________________________________
2657// TH2C methods
2658// TH2C a 2-D histogram with one byte per cell (char)
2659//______________________________________________________________________________
2660
2661ClassImp(TH2C);
2662
2663
2664////////////////////////////////////////////////////////////////////////////////
2665/// Constructor.
2666
2668{
2669 SetBinsLength(9);
2670 if (fgDefaultSumw2) Sumw2();
2671}
2672
2673
2674////////////////////////////////////////////////////////////////////////////////
2675/// Destructor.
2676
2678{
2679}
2680
2681
2682////////////////////////////////////////////////////////////////////////////////
2683/// Constructor.
2684
2685TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
2686 ,Int_t nbinsy,Double_t ylow,Double_t yup)
2687 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
2688{
2690 if (fgDefaultSumw2) Sumw2();
2691
2692 if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
2693}
2694
2695
2696////////////////////////////////////////////////////////////////////////////////
2697/// Constructor.
2698
2699TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
2700 ,Int_t nbinsy,Double_t ylow,Double_t yup)
2701 :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
2702{
2704 if (fgDefaultSumw2) Sumw2();
2705}
2706
2707
2708////////////////////////////////////////////////////////////////////////////////
2709/// Constructor.
2710
2711TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
2712 ,Int_t nbinsy,const Double_t *ybins)
2713 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
2714{
2716 if (fgDefaultSumw2) Sumw2();
2717}
2718
2719
2720////////////////////////////////////////////////////////////////////////////////
2721/// Constructor.
2722
2723TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
2724 ,Int_t nbinsy,const Double_t *ybins)
2725 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
2726{
2728 if (fgDefaultSumw2) Sumw2();
2729}
2730
2731
2732////////////////////////////////////////////////////////////////////////////////
2733/// Constructor.
2734
2735TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
2736 ,Int_t nbinsy,const Float_t *ybins)
2737 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
2738{
2740 if (fgDefaultSumw2) Sumw2();
2741}
2742
2743
2744////////////////////////////////////////////////////////////////////////////////
2745/// Copy constructor.
2746
2747TH2C::TH2C(const TH2C &h2c) : TH2(), TArrayC()
2748{
2749 ((TH2C&)h2c).Copy(*this);
2750}
2751
2752
2753////////////////////////////////////////////////////////////////////////////////
2754/// Increment bin content by 1.
2755
2757{
2758 if (fArray[bin] < 127) fArray[bin]++;
2759}
2760
2761
2762////////////////////////////////////////////////////////////////////////////////
2763/// Increment bin content by w.
2764
2766{
2767 Int_t newval = fArray[bin] + Int_t(w);
2768 if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
2769 if (newval < -127) fArray[bin] = -127;
2770 if (newval > 127) fArray[bin] = 127;
2771}
2772
2773
2774////////////////////////////////////////////////////////////////////////////////
2775/// Copy.
2776
2777void TH2C::Copy(TObject &newth2) const
2778{
2779 TH2::Copy((TH2C&)newth2);
2780}
2781
2782
2783////////////////////////////////////////////////////////////////////////////////
2784/// Reset this histogram: contents, errors, etc.
2785
2787{
2788 TH2::Reset(option);
2790}
2791
2792
2793////////////////////////////////////////////////////////////////////////////////
2794/// Set total number of bins including under/overflow
2795/// Reallocate bin contents array
2796
2798{
2799 if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
2800 fNcells = n;
2801 TArrayC::Set(n);
2802}
2803
2804
2805////////////////////////////////////////////////////////////////////////////////
2806/// Stream an object of class TH2C.
2807
2808void TH2C::Streamer(TBuffer &R__b)
2809{
2810 if (R__b.IsReading()) {
2811 UInt_t R__s, R__c;
2812 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
2813 if (R__v > 2) {
2814 R__b.ReadClassBuffer(TH2C::Class(), this, R__v, R__s, R__c);
2815 return;
2816 }
2817 //====process old versions before automatic schema evolution
2818 if (R__v < 2) {
2819 R__b.ReadVersion();
2820 TH1::Streamer(R__b);
2821 TArrayC::Streamer(R__b);
2822 R__b.ReadVersion();
2823 R__b >> fScalefactor;
2824 R__b >> fTsumwy;
2825 R__b >> fTsumwy2;
2826 R__b >> fTsumwxy;
2827 } else {
2828 TH2::Streamer(R__b);
2829 TArrayC::Streamer(R__b);
2830 R__b.CheckByteCount(R__s, R__c, TH2C::IsA());
2831 }
2832 //====end of old versions
2833
2834 } else {
2835 R__b.WriteClassBuffer(TH2C::Class(),this);
2836 }
2837}
2838
2839
2840////////////////////////////////////////////////////////////////////////////////
2841/// Operator =
2842
2844{
2845 if (this != &h1) ((TH2C&)h1).Copy(*this);
2846 return *this;
2847}
2848
2849
2850////////////////////////////////////////////////////////////////////////////////
2851/// Operator *
2852
2854{
2855 TH2C hnew = h1;
2856 hnew.Scale(c1);
2857 hnew.SetDirectory(0);
2858 return hnew;
2859}
2860
2861
2862////////////////////////////////////////////////////////////////////////////////
2863/// Operator +
2864
2866{
2867 TH2C hnew = h1;
2868 hnew.Add(&h2,1);
2869 hnew.SetDirectory(0);
2870 return hnew;
2871}
2872
2873
2874////////////////////////////////////////////////////////////////////////////////
2875/// Operator -
2876
2878{
2879 TH2C hnew = h1;
2880 hnew.Add(&h2,-1);
2881 hnew.SetDirectory(0);
2882 return hnew;
2883}
2884
2885
2886////////////////////////////////////////////////////////////////////////////////
2887/// Operator *
2888
2890{
2891 TH2C hnew = h1;
2892 hnew.Multiply(&h2);
2893 hnew.SetDirectory(0);
2894 return hnew;
2895}
2896
2897
2898////////////////////////////////////////////////////////////////////////////////
2899/// Operator /
2900
2902{
2903 TH2C hnew = h1;
2904 hnew.Divide(&h2);
2905 hnew.SetDirectory(0);
2906 return hnew;
2907}
2908
2909
2910//______________________________________________________________________________
2911// TH2S methods
2912// TH2S a 2-D histogram with two bytes per cell (short integer)
2913//______________________________________________________________________________
2914
2915ClassImp(TH2S);
2916
2917
2918////////////////////////////////////////////////////////////////////////////////
2919/// Constructor.
2920
2922{
2923 SetBinsLength(9);
2924 if (fgDefaultSumw2) Sumw2();
2925}
2926
2927
2928////////////////////////////////////////////////////////////////////////////////
2929/// Destructor.
2930
2932{
2933}
2934
2935
2936////////////////////////////////////////////////////////////////////////////////
2937/// Constructor.
2938
2939TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
2940 ,Int_t nbinsy,Double_t ylow,Double_t yup)
2941 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
2942{
2944 if (fgDefaultSumw2) Sumw2();
2945
2946 if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
2947}
2948
2949
2950////////////////////////////////////////////////////////////////////////////////
2951/// Constructor.
2952
2953TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
2954 ,Int_t nbinsy,Double_t ylow,Double_t yup)
2955 :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
2956{
2958 if (fgDefaultSumw2) Sumw2();
2959}
2960
2961
2962////////////////////////////////////////////////////////////////////////////////
2963/// Constructor.
2964
2965TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
2966 ,Int_t nbinsy,const Double_t *ybins)
2967 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
2968{
2970 if (fgDefaultSumw2) Sumw2();
2971}
2972
2973
2974////////////////////////////////////////////////////////////////////////////////
2975/// Constructor.
2976
2977TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
2978 ,Int_t nbinsy,const Double_t *ybins)
2979 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
2980{
2982 if (fgDefaultSumw2) Sumw2();
2983}
2984
2985
2986////////////////////////////////////////////////////////////////////////////////
2987/// Constructor.
2988
2989TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
2990 ,Int_t nbinsy,const Float_t *ybins)
2991 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
2992{
2994 if (fgDefaultSumw2) Sumw2();
2995}
2996
2997
2998////////////////////////////////////////////////////////////////////////////////
2999/// Copy constructor.
3000
3001TH2S::TH2S(const TH2S &h2s) : TH2(), TArrayS()
3002{
3003 ((TH2S&)h2s).Copy(*this);
3004}
3005
3006
3007////////////////////////////////////////////////////////////////////////////////
3008/// Increment bin content by 1.
3009
3011{
3012 if (fArray[bin] < 32767) fArray[bin]++;
3013}
3014
3015
3016////////////////////////////////////////////////////////////////////////////////
3017/// Increment bin content by w.
3018
3020{
3021 Int_t newval = fArray[bin] + Int_t(w);
3022 if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
3023 if (newval < -32767) fArray[bin] = -32767;
3024 if (newval > 32767) fArray[bin] = 32767;
3025}
3026
3027
3028////////////////////////////////////////////////////////////////////////////////
3029/// Copy.
3030
3031void TH2S::Copy(TObject &newth2) const
3032{
3033 TH2::Copy((TH2S&)newth2);
3034}
3035
3036
3037////////////////////////////////////////////////////////////////////////////////
3038/// Reset this histogram: contents, errors, etc.
3039
3041{
3042 TH2::Reset(option);
3044}
3045
3046
3047////////////////////////////////////////////////////////////////////////////////
3048/// Set total number of bins including under/overflow
3049/// Reallocate bin contents array
3050
3052{
3053 if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3054 fNcells = n;
3055 TArrayS::Set(n);
3056}
3057
3058
3059////////////////////////////////////////////////////////////////////////////////
3060/// Stream an object of class TH2S.
3061
3062void TH2S::Streamer(TBuffer &R__b)
3063{
3064 if (R__b.IsReading()) {
3065 UInt_t R__s, R__c;
3066 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
3067 if (R__v > 2) {
3068 R__b.ReadClassBuffer(TH2S::Class(), this, R__v, R__s, R__c);
3069 return;
3070 }
3071 //====process old versions before automatic schema evolution
3072 if (R__v < 2) {
3073 R__b.ReadVersion();
3074 TH1::Streamer(R__b);
3075 TArrayS::Streamer(R__b);
3076 R__b.ReadVersion();
3077 R__b >> fScalefactor;
3078 R__b >> fTsumwy;
3079 R__b >> fTsumwy2;
3080 R__b >> fTsumwxy;
3081 } else {
3082 TH2::Streamer(R__b);
3083 TArrayS::Streamer(R__b);
3084 R__b.CheckByteCount(R__s, R__c, TH2S::IsA());
3085 }
3086 //====end of old versions
3087
3088 } else {
3089 R__b.WriteClassBuffer(TH2S::Class(),this);
3090 }
3091}
3092
3093
3094////////////////////////////////////////////////////////////////////////////////
3095/// Operator =
3096
3098{
3099 if (this != &h1) ((TH2S&)h1).Copy(*this);
3100 return *this;
3101}
3102
3103
3104////////////////////////////////////////////////////////////////////////////////
3105/// Operator *
3106
3108{
3109 TH2S hnew = h1;
3110 hnew.Scale(c1);
3111 hnew.SetDirectory(0);
3112 return hnew;
3113}
3114
3115
3116////////////////////////////////////////////////////////////////////////////////
3117/// Operator +
3118
3120{
3121 TH2S hnew = h1;
3122 hnew.Add(&h2,1);
3123 hnew.SetDirectory(0);
3124 return hnew;
3125}
3126
3127
3128////////////////////////////////////////////////////////////////////////////////
3129/// Operator -
3130
3132{
3133 TH2S hnew = h1;
3134 hnew.Add(&h2,-1);
3135 hnew.SetDirectory(0);
3136 return hnew;
3137}
3138
3139
3140////////////////////////////////////////////////////////////////////////////////
3141/// Operator *
3142
3144{
3145 TH2S hnew = h1;
3146 hnew.Multiply(&h2);
3147 hnew.SetDirectory(0);
3148 return hnew;
3149}
3150
3151
3152////////////////////////////////////////////////////////////////////////////////
3153/// Operator /
3154
3156{
3157 TH2S hnew = h1;
3158 hnew.Divide(&h2);
3159 hnew.SetDirectory(0);
3160 return hnew;
3161}
3162
3163
3164//______________________________________________________________________________
3165// TH2I methods
3166// TH2I a 2-D histogram with four bytes per cell (32 bits integer)
3167//______________________________________________________________________________
3168
3169ClassImp(TH2I);
3170
3171
3172////////////////////////////////////////////////////////////////////////////////
3173/// Constructor.
3174
3176{
3177 SetBinsLength(9);
3178 if (fgDefaultSumw2) Sumw2();
3179}
3180
3181
3182////////////////////////////////////////////////////////////////////////////////
3183/// Destructor.
3184
3186{
3187}
3188
3189
3190////////////////////////////////////////////////////////////////////////////////
3191/// Constructor.
3192
3193TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3194 ,Int_t nbinsy,Double_t ylow,Double_t yup)
3195 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
3196{
3198 if (fgDefaultSumw2) Sumw2();
3199
3200 if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
3201}
3202
3203
3204////////////////////////////////////////////////////////////////////////////////
3205/// Constructor.
3206
3207TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3208 ,Int_t nbinsy,Double_t ylow,Double_t yup)
3209 :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
3210{
3212 if (fgDefaultSumw2) Sumw2();
3213}
3214
3215
3216////////////////////////////////////////////////////////////////////////////////
3217/// Constructor.
3218
3219TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3220 ,Int_t nbinsy,const Double_t *ybins)
3221 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
3222{
3224 if (fgDefaultSumw2) Sumw2();
3225}
3226
3227
3228////////////////////////////////////////////////////////////////////////////////
3229/// Constructor.
3230
3231TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3232 ,Int_t nbinsy,const Double_t *ybins)
3233 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3234{
3236 if (fgDefaultSumw2) Sumw2();
3237}
3238
3239
3240////////////////////////////////////////////////////////////////////////////////
3241/// Constructor.
3242
3243TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
3244 ,Int_t nbinsy,const Float_t *ybins)
3245 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3246{
3248 if (fgDefaultSumw2) Sumw2();
3249}
3250
3251
3252////////////////////////////////////////////////////////////////////////////////
3253/// Copy constructor.
3254
3255TH2I::TH2I(const TH2I &h2i) : TH2(), TArrayI()
3256{
3257 ((TH2I&)h2i).Copy(*this);
3258}
3259
3260
3261////////////////////////////////////////////////////////////////////////////////
3262/// Increment bin content by 1.
3263
3265{
3266 if (fArray[bin] < 2147483647) fArray[bin]++;
3267}
3268
3269
3270////////////////////////////////////////////////////////////////////////////////
3271/// Increment bin content by w.
3272
3274{
3275 Long64_t newval = fArray[bin] + Long64_t(w);
3276 if (newval > -2147483647 && newval < 2147483647) {fArray[bin] = Int_t(newval); return;}
3277 if (newval < -2147483647) fArray[bin] = -2147483647;
3278 if (newval > 2147483647) fArray[bin] = 2147483647;
3279}
3280
3281
3282////////////////////////////////////////////////////////////////////////////////
3283/// Copy.
3284
3285void TH2I::Copy(TObject &newth2) const
3286{
3287 TH2::Copy((TH2I&)newth2);
3288}
3289
3290
3291////////////////////////////////////////////////////////////////////////////////
3292/// Reset this histogram: contents, errors, etc.
3293
3295{
3296 TH2::Reset(option);
3298}
3299
3300
3301////////////////////////////////////////////////////////////////////////////////
3302/// Set total number of bins including under/overflow
3303/// Reallocate bin contents array
3304
3306{
3307 if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3308 fNcells = n;
3309 TArrayI::Set(n);
3310}
3311
3312
3313////////////////////////////////////////////////////////////////////////////////
3314/// Operator =
3315
3317{
3318 if (this != &h1) ((TH2I&)h1).Copy(*this);
3319 return *this;
3320}
3321
3322
3323////////////////////////////////////////////////////////////////////////////////
3324/// Operator *
3325
3327{
3328 TH2I hnew = h1;
3329 hnew.Scale(c1);
3330 hnew.SetDirectory(0);
3331 return hnew;
3332}
3333
3334
3335////////////////////////////////////////////////////////////////////////////////
3336/// Operator +
3337
3339{
3340 TH2I hnew = h1;
3341 hnew.Add(&h2,1);
3342 hnew.SetDirectory(0);
3343 return hnew;
3344}
3345
3346
3347////////////////////////////////////////////////////////////////////////////////
3348/// Operator -
3349
3351{
3352 TH2I hnew = h1;
3353 hnew.Add(&h2,-1);
3354 hnew.SetDirectory(0);
3355 return hnew;
3356}
3357
3358
3359////////////////////////////////////////////////////////////////////////////////
3360/// Operator *
3361
3363{
3364 TH2I hnew = h1;
3365 hnew.Multiply(&h2);
3366 hnew.SetDirectory(0);
3367 return hnew;
3368}
3369
3370
3371////////////////////////////////////////////////////////////////////////////////
3372/// Operator /
3373
3375{
3376 TH2I hnew = h1;
3377 hnew.Divide(&h2);
3378 hnew.SetDirectory(0);
3379 return hnew;
3380}
3381
3382
3383//______________________________________________________________________________
3384// TH2F methods
3385// TH2F a 2-D histogram with four bytes per cell (float)
3386//______________________________________________________________________________
3387
3388ClassImp(TH2F);
3389
3390
3391////////////////////////////////////////////////////////////////////////////////
3392/// Constructor.
3393
3395{
3396 SetBinsLength(9);
3397 if (fgDefaultSumw2) Sumw2();
3398}
3399
3400
3401////////////////////////////////////////////////////////////////////////////////
3402/// Destructor.
3403
3405{
3406}
3407
3408
3409////////////////////////////////////////////////////////////////////////////////
3410/// Constructor.
3411
3412TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3413 ,Int_t nbinsy,Double_t ylow,Double_t yup)
3414 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
3415{
3417 if (fgDefaultSumw2) Sumw2();
3418
3419 if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
3420}
3421
3422
3423////////////////////////////////////////////////////////////////////////////////
3424/// Constructor.
3425
3426TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3427 ,Int_t nbinsy,Double_t ylow,Double_t yup)
3428 :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
3429{
3431 if (fgDefaultSumw2) Sumw2();
3432}
3433
3434
3435////////////////////////////////////////////////////////////////////////////////
3436/// Constructor.
3437
3438TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3439 ,Int_t nbinsy,const Double_t *ybins)
3440 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
3441{
3443 if (fgDefaultSumw2) Sumw2();
3444}
3445
3446
3447////////////////////////////////////////////////////////////////////////////////
3448/// Constructor.
3449
3450TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3451 ,Int_t nbinsy,const Double_t *ybins)
3452 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3453{
3455 if (fgDefaultSumw2) Sumw2();
3456}
3457
3458
3459////////////////////////////////////////////////////////////////////////////////
3460/// Constructor.
3461
3462TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
3463 ,Int_t nbinsy,const Float_t *ybins)
3464 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3465{
3467 if (fgDefaultSumw2) Sumw2();
3468}
3469
3470
3471////////////////////////////////////////////////////////////////////////////////
3472/// Constructor.
3473
3475:TH2("TMatrixFBase","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
3476{
3478 Int_t ilow = m.GetRowLwb();
3479 Int_t iup = m.GetRowUpb();
3480 Int_t jlow = m.GetColLwb();
3481 Int_t jup = m.GetColUpb();
3482 for (Int_t i=ilow;i<=iup;i++) {
3483 for (Int_t j=jlow;j<=jup;j++) {
3484 SetBinContent(j-jlow+1,i-ilow+1,m(i,j));
3485 }
3486 }
3487}
3488
3489
3490////////////////////////////////////////////////////////////////////////////////
3491/// Copy constructor.
3492
3493TH2F::TH2F(const TH2F &h2f) : TH2(), TArrayF()
3494{
3495 ((TH2F&)h2f).Copy(*this);
3496}
3497
3498
3499////////////////////////////////////////////////////////////////////////////////
3500/// Copy.
3501
3502void TH2F::Copy(TObject &newth2) const
3503{
3504 TH2::Copy((TH2F&)newth2);
3505}
3506
3507
3508////////////////////////////////////////////////////////////////////////////////
3509/// Reset this histogram: contents, errors, etc.
3510
3512{
3513 TH2::Reset(option);
3515}
3516
3517
3518////////////////////////////////////////////////////////////////////////////////
3519/// Set total number of bins including under/overflow
3520/// Reallocate bin contents array
3521
3523{
3524 if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3525 fNcells = n;
3526 TArrayF::Set(n);
3527}
3528
3529
3530////////////////////////////////////////////////////////////////////////////////
3531/// Stream an object of class TH2F.
3532
3533void TH2F::Streamer(TBuffer &R__b)
3534{
3535 if (R__b.IsReading()) {
3536 UInt_t R__s, R__c;
3537 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
3538 if (R__v > 2) {
3539 R__b.ReadClassBuffer(TH2F::Class(), this, R__v, R__s, R__c);
3540 return;
3541 }
3542 //====process old versions before automatic schema evolution
3543 if (R__v < 2) {
3544 R__b.ReadVersion();
3545 TH1::Streamer(R__b);
3546 TArrayF::Streamer(R__b);
3547 R__b.ReadVersion();
3548 R__b >> fScalefactor;
3549 R__b >> fTsumwy;
3550 R__b >> fTsumwy2;
3551 R__b >> fTsumwxy;
3552 } else {
3553 TH2::Streamer(R__b);
3554 TArrayF::Streamer(R__b);
3555 R__b.CheckByteCount(R__s, R__c, TH2F::IsA());
3556 }
3557 //====end of old versions
3558
3559 } else {
3560 R__b.WriteClassBuffer(TH2F::Class(),this);
3561 }
3562}
3563
3564
3565////////////////////////////////////////////////////////////////////////////////
3566/// Operator =
3567
3569{
3570 if (this != &h1) ((TH2F&)h1).Copy(*this);
3571 return *this;
3572}
3573
3574
3575////////////////////////////////////////////////////////////////////////////////
3576/// Operator *
3577
3579{
3580 TH2F hnew = h1;
3581 hnew.Scale(c1);
3582 hnew.SetDirectory(0);
3583 return hnew;
3584}
3585
3586
3587////////////////////////////////////////////////////////////////////////////////
3588/// Operator *
3589
3591{
3592 TH2F hnew = h1;
3593 hnew.Scale(c1);
3594 hnew.SetDirectory(0);
3595 return hnew;
3596}
3597
3598
3599////////////////////////////////////////////////////////////////////////////////
3600/// Operator +
3601
3603{
3604 TH2F hnew = h1;
3605 hnew.Add(&h2,1);
3606 hnew.SetDirectory(0);
3607 return hnew;
3608}
3609
3610
3611////////////////////////////////////////////////////////////////////////////////
3612/// Operator -
3613
3615{
3616 TH2F hnew = h1;
3617 hnew.Add(&h2,-1);
3618 hnew.SetDirectory(0);
3619 return hnew;
3620}
3621
3622
3623////////////////////////////////////////////////////////////////////////////////
3624/// Operator *
3625
3627{
3628 TH2F hnew = h1;
3629 hnew.Multiply(&h2);
3630 hnew.SetDirectory(0);
3631 return hnew;
3632}
3633
3634
3635////////////////////////////////////////////////////////////////////////////////
3636/// Operator /
3637
3639{
3640 TH2F hnew = h1;
3641 hnew.Divide(&h2);
3642 hnew.SetDirectory(0);
3643 return hnew;
3644}
3645
3646
3647//______________________________________________________________________________
3648// TH2D methods
3649// TH2D a 2-D histogram with eight bytes per cell (double)
3650//______________________________________________________________________________
3651
3652ClassImp(TH2D);
3653
3654
3655////////////////////////////////////////////////////////////////////////////////
3656/// Constructor.
3657
3659{
3660 SetBinsLength(9);
3661 if (fgDefaultSumw2) Sumw2();
3662}
3663
3664
3665////////////////////////////////////////////////////////////////////////////////
3666/// Destructor.
3667
3669{
3670}
3671
3672
3673////////////////////////////////////////////////////////////////////////////////
3674/// Constructor.
3675
3676TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3677 ,Int_t nbinsy,Double_t ylow,Double_t yup)
3678 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
3679{
3681 if (fgDefaultSumw2) Sumw2();
3682
3683 if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
3684}
3685
3686
3687////////////////////////////////////////////////////////////////////////////////
3688/// Constructor.
3689
3690TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3691 ,Int_t nbinsy,Double_t ylow,Double_t yup)
3692 :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
3693{
3695 if (fgDefaultSumw2) Sumw2();
3696}
3697
3698
3699////////////////////////////////////////////////////////////////////////////////
3700/// Constructor.
3701
3702TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3703 ,Int_t nbinsy,const Double_t *ybins)
3704 :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
3705{
3707 if (fgDefaultSumw2) Sumw2();
3708}
3709
3710
3711////////////////////////////////////////////////////////////////////////////////
3712/// Constructor.
3713
3714TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3715 ,Int_t nbinsy,const Double_t *ybins)
3716 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3717{
3719 if (fgDefaultSumw2) Sumw2();
3720}
3721
3722
3723////////////////////////////////////////////////////////////////////////////////
3724/// Constructor.
3725
3726TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
3727 ,Int_t nbinsy,const Float_t *ybins)
3728 :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3729{
3731 if (fgDefaultSumw2) Sumw2();
3732}
3733
3734
3735////////////////////////////////////////////////////////////////////////////////
3736/// Constructor.
3737
3739:TH2("TMatrixDBase","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
3740{
3742 Int_t ilow = m.GetRowLwb();
3743 Int_t iup = m.GetRowUpb();
3744 Int_t jlow = m.GetColLwb();
3745 Int_t jup = m.GetColUpb();
3746 for (Int_t i=ilow;i<=iup;i++) {
3747 for (Int_t j=jlow;j<=jup;j++) {
3748 SetBinContent(j-jlow+1,i-ilow+1,m(i,j));
3749 }
3750 }
3751 if (fgDefaultSumw2) Sumw2();
3752}
3753
3754
3755////////////////////////////////////////////////////////////////////////////////
3756/// Copy constructor.
3757
3758TH2D::TH2D(const TH2D &h2d) : TH2(), TArrayD()
3759{
3760 ((TH2D&)h2d).Copy(*this);
3761}
3762
3763
3764////////////////////////////////////////////////////////////////////////////////
3765/// Copy.
3766
3767void TH2D::Copy(TObject &newth2) const
3768{
3769 TH2::Copy((TH2D&)newth2);
3770}
3771
3772
3773////////////////////////////////////////////////////////////////////////////////
3774/// Reset this histogram: contents, errors, etc.
3775
3777{
3778 TH2::Reset(option);
3780}
3781
3782
3783////////////////////////////////////////////////////////////////////////////////
3784/// Set total number of bins including under/overflow
3785/// Reallocate bin contents array
3786
3788{
3789 if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3790 fNcells = n;
3791 TArrayD::Set(n);
3792}
3793
3794
3795////////////////////////////////////////////////////////////////////////////////
3796/// Stream an object of class TH2D.
3797
3798void TH2D::Streamer(TBuffer &R__b)
3799{
3800 if (R__b.IsReading()) {
3801 UInt_t R__s, R__c;
3802 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
3803 if (R__v > 2) {
3804 R__b.ReadClassBuffer(TH2D::Class(), this, R__v, R__s, R__c);
3805 return;
3806 }
3807 //====process old versions before automatic schema evolution
3808 if (R__v < 2) {
3809 R__b.ReadVersion();
3810 TH1::Streamer(R__b);
3811 TArrayD::Streamer(R__b);
3812 R__b.ReadVersion();
3813 R__b >> fScalefactor;
3814 R__b >> fTsumwy;
3815 R__b >> fTsumwy2;
3816 R__b >> fTsumwxy;
3817 } else {
3818 TH2::Streamer(R__b);
3819 TArrayD::Streamer(R__b);
3820 R__b.CheckByteCount(R__s, R__c, TH2D::IsA());
3821 }
3822 //====end of old versions
3823
3824 } else {
3825 R__b.WriteClassBuffer(TH2D::Class(),this);
3826 }
3827}
3828
3829
3830////////////////////////////////////////////////////////////////////////////////
3831/// Operator =
3832
3834{
3835 if (this != &h1) ((TH2D&)h1).Copy(*this);
3836 return *this;
3837}
3838
3839
3840
3841////////////////////////////////////////////////////////////////////////////////
3842/// Operator *
3843
3845{
3846 TH2D hnew = h1;
3847 hnew.Scale(c1);
3848 hnew.SetDirectory(0);
3849 return hnew;
3850}
3851
3852
3853////////////////////////////////////////////////////////////////////////////////
3854/// Operator +
3855
3857{
3858 TH2D hnew = h1;
3859 hnew.Add(&h2,1);
3860 hnew.SetDirectory(0);
3861 return hnew;
3862}
3863
3864
3865////////////////////////////////////////////////////////////////////////////////
3866/// Operator -
3867
3869{
3870 TH2D hnew = h1;
3871 hnew.Add(&h2,-1);
3872 hnew.SetDirectory(0);
3873 return hnew;
3874}
3875
3876
3877////////////////////////////////////////////////////////////////////////////////
3878/// Operator *
3879
3881{
3882 TH2D hnew = h1;
3883 hnew.Multiply(&h2);
3884 hnew.SetDirectory(0);
3885 return hnew;
3886}
3887
3888
3889////////////////////////////////////////////////////////////////////////////////
3890/// Operator /
3891
3893{
3894 TH2D hnew = h1;
3895 hnew.Divide(&h2);
3896 hnew.SetDirectory(0);
3897 return hnew;
3898}
void Class()
Definition: Class.C:29
#define d(i)
Definition: RSha256.hxx:102
#define f(i)
Definition: RSha256.hxx:104
#define c(i)
Definition: RSha256.hxx:101
#define s1(x)
Definition: RSha256.hxx:91
#define h(i)
Definition: RSha256.hxx:106
#define e(i)
Definition: RSha256.hxx:103
static const double x2[5]
static const double x1[5]
int Int_t
Definition: RtypesCore.h:41
short Version_t
Definition: RtypesCore.h:61
char Char_t
Definition: RtypesCore.h:29
unsigned int UInt_t
Definition: RtypesCore.h:42
const Bool_t kFALSE
Definition: RtypesCore.h:88
unsigned long ULong_t
Definition: RtypesCore.h:51
bool Bool_t
Definition: RtypesCore.h:59
short Short_t
Definition: RtypesCore.h:35
double Double_t
Definition: RtypesCore.h:55
short Color_t
Definition: RtypesCore.h:79
long long Long64_t
Definition: RtypesCore.h:69
short Style_t
Definition: RtypesCore.h:76
float Float_t
Definition: RtypesCore.h:53
const Bool_t kTRUE
Definition: RtypesCore.h:87
const char Option_t
Definition: RtypesCore.h:62
#define ClassImp(name)
Definition: Rtypes.h:365
#define gDirectory
Definition: TDirectory.h:218
void Warning(const char *location, const char *msgfmt,...)
char name[80]
Definition: TGX11.cxx:109
TH2C operator-(TH2C &h1, TH2C &h2)
Operator -.
Definition: TH2.cxx:2877
TH2C operator+(TH2C &h1, TH2C &h2)
Operator +.
Definition: TH2.cxx:2865
TH2C operator/(TH2C &h1, TH2C &h2)
Operator /.
Definition: TH2.cxx:2901
TH2C operator*(Float_t c1, TH2C &h1)
Operator *.
Definition: TH2.cxx:2853
float xmin
Definition: THbookFile.cxx:93
int nentries
Definition: THbookFile.cxx:89
float ymin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
float ymax
Definition: THbookFile.cxx:93
double sqrt(double)
#define gROOT
Definition: TROOT.h:414
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
char * Form(const char *fmt,...)
#define gPad
Definition: TVirtualPad.h:286
#define snprintf
Definition: civetweb.c:1540
Array of chars or bytes (8 bits per element).
Definition: TArrayC.h:27
void Set(Int_t n)
Set size of this array to n chars.
Definition: TArrayC.cxx:105
Char_t * fArray
Definition: TArrayC.h:30
void Copy(TArrayC &array) const
Definition: TArrayC.h:42
void Reset(Char_t val=0)
Definition: TArrayC.h:47
Array of doubles (64 bits per element).
Definition: TArrayD.h:27
Double_t * fArray
Definition: TArrayD.h:30
void Copy(TArrayD &array) const
Definition: TArrayD.h:42
void Set(Int_t n)
Set size of this array to n doubles.
Definition: TArrayD.cxx:106
Stat_t GetSum() const
Definition: TArrayD.h:46
void Reset()
Definition: TArrayD.h:47
Array of floats (32 bits per element).
Definition: TArrayF.h:27
void Copy(TArrayF &array) const
Definition: TArrayF.h:42
void Reset()
Definition: TArrayF.h:47
void Set(Int_t n)
Set size of this array to n floats.
Definition: TArrayF.cxx:105
Array of integers (32 bits per element).
Definition: TArrayI.h:27
Int_t * fArray
Definition: TArrayI.h:30
void Set(Int_t n)
Set size of this array to n ints.
Definition: TArrayI.cxx:105
void Reset()
Definition: TArrayI.h:47
void Copy(TArrayI &array) const
Definition: TArrayI.h:42
Array of shorts (16 bits per element).
Definition: TArrayS.h:27
void Set(Int_t n)
Set size of this array to n shorts.
Definition: TArrayS.cxx:105
void Reset()
Definition: TArrayS.h:47
void Copy(TArrayS &array) const
Definition: TArrayS.h:42
Short_t * fArray
Definition: TArrayS.h:30
Int_t fN
Definition: TArray.h:38
Int_t GetSize() const
Definition: TArray.h:47
virtual Color_t GetTitleColor() const
Definition: TAttAxis.h:45
virtual Color_t GetLabelColor() const
Definition: TAttAxis.h:38
virtual Int_t GetNdivisions() const
Definition: TAttAxis.h:36
virtual Color_t GetAxisColor() const
Definition: TAttAxis.h:37
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
virtual Style_t GetTitleFont() const
Definition: TAttAxis.h:46
virtual Float_t GetLabelOffset() const
Definition: TAttAxis.h:40
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
Definition: TAttAxis.cxx:163
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels The size is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:204
virtual Style_t GetLabelFont() const
Definition: TAttAxis.h:39
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Definition: TAttAxis.cxx:322
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels The distance is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:193
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
Definition: TAttAxis.cxx:183
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title The size is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:304
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
Definition: TAttAxis.cxx:313
virtual Float_t GetTitleSize() const
Definition: TAttAxis.h:43
virtual Float_t GetLabelSize() const
Definition: TAttAxis.h:41
virtual Float_t GetTickLength() const
Definition: TAttAxis.h:44
virtual Float_t GetTitleOffset() const
Definition: TAttAxis.h:42
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length The length is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:280
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
Definition: TAttAxis.cxx:229
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Definition: TAttAxis.cxx:173
virtual Color_t GetFillColor() const
Return the fill area color.
Definition: TAttFill.h:30
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition: TAttFill.h:37
virtual Color_t GetLineColor() const
Return the line color.
Definition: TAttLine.h:33
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
virtual Style_t GetMarkerStyle() const
Return the marker style.
Definition: TAttMarker.h:32
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition: TAttMarker.h:38
virtual Color_t GetMarkerColor() const
Return the marker color.
Definition: TAttMarker.h:31
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition: TAttMarker.h:40
Class to manage histogram axis.
Definition: TAxis.h:30
virtual void SetBinLabel(Int_t bin, const char *label)
Set label for bin.
Definition: TAxis.cxx:809
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition: TAxis.cxx:464
const TArrayD * GetXbins() const
Definition: TAxis.h:130
Double_t GetXmax() const
Definition: TAxis.h:134
@ kAxisRange
Definition: TAxis.h:61
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition: TAxis.cxx:279
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition: TAxis.cxx:504
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition: TAxis.cxx:717
Int_t GetLast() const
Return last bin on the axis i.e.
Definition: TAxis.cxx:455
virtual void ImportAttributes(const TAxis *axis)
Copy axis attributes to this.
Definition: TAxis.cxx:617
Double_t GetXmin() const
Definition: TAxis.h:133
Int_t GetNbins() const
Definition: TAxis.h:121
const char * GetTitle() const
Returns title of object.
Definition: TAxis.h:129
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Definition: TAxis.cxx:526
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Definition: TAxis.cxx:514
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition: TAxis.cxx:444
THashList * GetLabels() const
Definition: TAxis.h:117
Buffer base class used for serializing objects.
Definition: TBuffer.h:42
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
virtual Version_t ReadVersion(UInt_t *start=0, UInt_t *bcnt=0, const TClass *cl=0)=0
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss)=0
Bool_t IsReading() const
Definition: TBuffer.h:85
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
1-Dim function class
Definition: TF1.h:211
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function.
Definition: TF1.cxx:1564
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
Definition: TF1.cxx:1910
Double_t GetChisquare() const
Definition: TF1.h:438
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
Definition: TF1.cxx:3518
virtual Int_t GetNpar() const
Definition: TF1.h:475
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition: TF1.cxx:2502
virtual Int_t GetNumberFitPoints() const
Definition: TF1.h:497
virtual Double_t * GetParameters() const
Definition: TF1.h:514
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition: TF1.cxx:2263
virtual const char * GetParName(Int_t ipar) const
Definition: TF1.h:523
virtual void SetParameters(const Double_t *params)
Definition: TF1.h:638
virtual Double_t GetParameter(Int_t ipar) const
Definition: TF1.h:506
A 2-Dim function with parameters.
Definition: TF2.h:29
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
virtual void Reset(Option_t *option="")
Reset.
Definition: TH1.cxx:9519
The TH1 histogram class.
Definition: TH1.h:56
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
Definition: TH1.cxx:8351
Double_t * fBuffer
[fBufferSize] entry buffer
Definition: TH1.h:105
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
Definition: TH1.cxx:4302
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
Definition: TH1.cxx:5634
Int_t fNcells
number of bins(1D), cells (2D) +U/Overflows
Definition: TH1.h:86
Double_t fTsumw
Total Sum of weights.
Definition: TH1.h:93
Double_t fTsumw2
Total Sum of squares of weights.
Definition: TH1.h:94
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum=0)
Compute Quantiles for this histogram Quantile x_q of a probability distribution Function F is defined...
Definition: TH1.cxx:4434
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Definition: TH1.cxx:7449
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition: TH1.h:96
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
Definition: TH1.cxx:7104
virtual Int_t GetNbinsY() const
Definition: TH1.h:293
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH1.cxx:1200
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition: TH1.cxx:8476
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition: TH1.cxx:7050
virtual Int_t GetDimension() const
Definition: TH1.h:278
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted different than...
Definition: TH1.h:167
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
Definition: TH1.cxx:6242
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH1.cxx:6700
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
Definition: TH1.h:316
virtual Int_t GetNcells() const
Definition: TH1.h:295
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition: TH1.cxx:7359
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
Definition: TH1.cxx:4343
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
Definition: TH1.cxx:2664
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition: TH1.cxx:3791
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition: TH1.cxx:4784
virtual Int_t GetNbinsX() const
Definition: TH1.h:292
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition: TH1.cxx:777
Int_t fBufferSize
fBuffer size
Definition: TH1.h:104
virtual Double_t RetrieveBinContent(Int_t bin) const
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition: TH1.cxx:8853
Int_t fDimension
!Histogram dimension (1, 2 or 3 dim)
Definition: TH1.h:107
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition: TH1.cxx:8619
static Int_t fgBufferSize
!default buffer size for automatic histograms
Definition: TH1.h:112
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3258
TAxis * GetYaxis()
Definition: TH1.h:317
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition: TH1.h:439
Double_t * fIntegral
!Integral of bins used by GetRandom
Definition: TH1.h:108
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8635
@ kNstat
Definition: TH1.h:179
virtual Double_t GetEntries() const
Return the current number of entries.
Definition: TH1.cxx:4277
virtual void Copy(TObject &hnew) const
Copy this histogram structure to newth1.
Definition: TH1.cxx:2587
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2981
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculates from bin cont...
Definition: TH1.cxx:7374
virtual void SetBuffer(Int_t buffersize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Definition: TH1.cxx:7880
Double_t fEntries
Number of entries.
Definition: TH1.h:92
virtual void SetName(const char *name)
Change the name of this histogram.
Definition: TH1.cxx:8374
virtual void UpdateBinContent(Int_t bin, Double_t content)
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Definition: TH1.cxx:8863
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4882
TAxis fXaxis
X axis descriptor.
Definition: TH1.h:87
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Definition: TH1.cxx:6118
TArrayD fSumw2
Array of sum of squares of weights.
Definition: TH1.h:101
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition: TH1.cxx:6218
virtual void Paint(Option_t *option="")
Control routine to paint any kind of histograms.
Definition: TH1.cxx:5809
virtual Int_t GetSumw2N() const
Definition: TH1.h:310
Bool_t GetStatOverflowsBehaviour() const
Definition: TH1.h:148
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2),...
Definition: TH1.cxx:2736
TAxis fYaxis
Y axis descriptor.
Definition: TH1.h:88
TVirtualHistPainter * fPainter
!pointer to histogram painter
Definition: TH1.h:109
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition: TH1.cxx:8181
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition: TH1.cxx:8433
virtual void SetEntries(Double_t n)
Definition: TH1.h:381
static Bool_t fgDefaultSumw2
!flag to call TH1::Sumw2 automatically at histogram creation time
Definition: TH1.h:115
Double_t fTsumwx
Total Sum of weight*X.
Definition: TH1.h:95
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false)
Compute integral (cumulative sum of bins) The result stored in fIntegral is used by the GetRandom fun...
Definition: TH1.cxx:2474
2-D histogram with a byte per channel (see TH1 documentation)
Definition: TH2.h:131
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH2.cxx:2786
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH2.cxx:2756
virtual ~TH2C()
Destructor.
Definition: TH2.cxx:2677
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:2797
TH2C()
Constructor.
Definition: TH2.cxx:2667
TH2C & operator=(const TH2C &h1)
Operator =.
Definition: TH2.cxx:2843
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:2777
2-D histogram with a double per channel (see TH1 documentation)}
Definition: TH2.h:289
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3787
virtual ~TH2D()
Destructor.
Definition: TH2.cxx:3668
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3767
TH2D()
Constructor.
Definition: TH2.cxx:3658
TH2D & operator=(const TH2D &h1)
Operator =.
Definition: TH2.cxx:3833
2-D histogram with a float per channel (see TH1 documentation)}
Definition: TH2.h:248
TH2F()
Constructor.
Definition: TH2.cxx:3394
TH2F & operator=(const TH2F &h1)
Operator =.
Definition: TH2.cxx:3568
virtual ~TH2F()
Destructor.
Definition: TH2.cxx:3404
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3522
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3502
2-D histogram with an int per channel (see TH1 documentation)}
Definition: TH2.h:209
TH2I()
Constructor.
Definition: TH2.cxx:3175
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3285
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3305
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH2.cxx:3264
virtual ~TH2I()
Destructor.
Definition: TH2.cxx:3185
TH2I & operator=(const TH2I &h1)
Operator =.
Definition: TH2.cxx:3316
2-D histogram with a short per channel (see TH1 documentation)
Definition: TH2.h:170
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3051
TH2S & operator=(const TH2S &h1)
Operator =.
Definition: TH2.cxx:3097
TH2S()
Constructor.
Definition: TH2.cxx:2921
virtual ~TH2S()
Destructor.
Definition: TH2.cxx:2931
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3031
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH2.cxx:3010
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition: TH2.cxx:2306
TH1D * ProjectionY(const char *name="_py", Int_t firstxbin=0, Int_t lastxbin=-1, Option_t *option="") const
Project a 2-D histogram into a 1-D histogram along Y.
Definition: TH2.cxx:2297
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
Definition: TH2.cxx:177
virtual Double_t GetCorrelationFactor(Int_t axis1=1, Int_t axis2=2) const
Return correlation factor between axis1 and axis2.
Definition: TH2.cxx:980
virtual TProfile * DoProfile(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
Definition: TH2.cxx:1708
virtual Double_t GetBinWithContent2(Double_t c, Int_t &binx, Int_t &biny, Int_t firstxbin=1, Int_t lastxbin=-1, Int_t firstybin=1, Int_t lastybin=-1, Double_t maxdiff=0) const
compute first cell (binx,biny) in the range [firstxbin,lastxbin][firstybin,lastybin] for which diff =...
Definition: TH2.cxx:952
TProfile * ProfileX(const char *name="_pfx", Int_t firstybin=1, Int_t lastybin=-1, Option_t *option="") const
Project a 2-D histogram into a profile histogram along X.
Definition: TH2.cxx:1931
TH1D * QuantilesY(Double_t prob=0.5, const char *name="_qy") const
Compute the Y distribution of quantiles in the other variable X name is the name of the returned hist...
Definition: TH2.cxx:2339
TProfile * ProfileY(const char *name="_pfy", Int_t firstxbin=1, Int_t lastxbin=-1, Option_t *option="") const
Project a 2-D histogram into a profile histogram along Y.
Definition: TH2.cxx:1981
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH2.cxx:2424
virtual TH1D * DoQuantiles(bool onX, const char *name, Double_t prob) const
Implementation of quantiles for x or y.
Definition: TH2.cxx:2348
Double_t fTsumwxy
Definition: TH2.h:36
Int_t Fill(Double_t)
Invalid Fill method.
Definition: TH2.cxx:292
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
Definition: TH2.cxx:2485
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum2::Search the function finds peaks in this histogram where the width is > sigma...
Definition: TH2.cxx:2501
virtual void DoFitSlices(bool onX, TF1 *f1, Int_t firstbin, Int_t lastbin, Int_t cut, Option_t *option, TObjArray *arr)
Definition: TH2.cxx:693
TH1D * QuantilesX(Double_t prob=0.5, const char *name="_qx") const
Compute the X distribution of quantiles in the other variable Y name is the name of the returned hist...
Definition: TH2.cxx:2326
virtual TH2 * RebinX(Int_t ngroup=2, const char *newname="")
Rebin only the X axis see Rebin2D.
Definition: TH2.cxx:1470
virtual void SetShowProjectionY(Int_t nbins=1)
When the mouse is moved in a pad containing a 2-d view of this histogram a second canvas shows the pr...
Definition: TH2.cxx:2472
virtual void FillRandom(const char *fname, Int_t ntimes=5000)
Fill histogram following distribution in function fname.
Definition: TH2.cxx:597
virtual TH2 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=0)
Override TH1::Rebin as TH2::RebinX Rebinning in variable binning as for TH1 is not allowed If a non-n...
Definition: TH2.cxx:1491
Double_t fScalefactor
Definition: TH2.h:33
virtual void GetStats(Double_t *stats) const
Fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition: TH2.cxx:1083
virtual TH1D * DoProjection(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
Internal (protected) method for performing projection on the X or Y axis called by ProjectionX or Pro...
Definition: TH2.cxx:1991
Double_t fTsumwy2
Definition: TH2.h:35
virtual Double_t GetCovariance(Int_t axis1=1, Int_t axis2=2) const
Return covariance between axis1 and axis2.
Definition: TH2.cxx:998
virtual void GetRandom2(Double_t &x, Double_t &y)
Return 2 random numbers along axis x and y distributed according the cell-contents of a 2-dim histogr...
Definition: TH2.cxx:1030
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this 2-d histogram using kernel algorithms similar to the ones used in the ras...
Definition: TH2.cxx:2530
virtual void FillN(Int_t, const Double_t *, const Double_t *, Int_t)
Fill this histogram with an array x and weights w.
Definition: TH2.h:74
TH1D * ProjectionX(const char *name="_px", Int_t firstybin=0, Int_t lastybin=-1, Option_t *option="") const
Project a 2-D histogram into a 1-D histogram along X.
Definition: TH2.cxx:2257
virtual void FitSlicesX(TF1 *f1=0, Int_t firstybin=0, Int_t lastybin=-1, Int_t cut=0, Option_t *option="QNR", TObjArray *arr=0)
Project slices along X in case of a 2-D histogram, then fit each slice with function f1 and make a hi...
Definition: TH2.cxx:851
virtual Int_t GetBin(Int_t binx, Int_t biny, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition: TH2.cxx:921
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
Definition: TH2.cxx:1142
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Int_t biny1, Int_t biny2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [firstxbin,lastxbin],[firstybin,lastybin] for a 2-D histogra...
Definition: TH2.cxx:1171
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between THIS histogram and h2, using Kolmogorov test.
Definition: TH2.cxx:1298
virtual Double_t Interpolate(Double_t x)
illegal for a TH2
Definition: TH2.cxx:1180
Double_t fTsumwy
Definition: TH2.h:34
TH2()
Constructor.
Definition: TH2.cxx:60
virtual void SetShowProjectionX(Int_t nbins=1)
When the mouse is moved in a pad containing a 2-d view of this histogram a second canvas shows the pr...
Definition: TH2.cxx:2457
virtual void FitSlicesY(TF1 *f1=0, Int_t firstxbin=0, Int_t lastxbin=-1, Int_t cut=0, Option_t *option="QNR", TObjArray *arr=0)
Project slices along Y in case of a 2-D histogram, then fit each slice with function f1 and make a hi...
Definition: TH2.cxx:916
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH2.h:82
virtual TH2 * Rebin2D(Int_t nxgroup=2, Int_t nygroup=2, const char *newname="")
Rebin this histogram grouping nxgroup/nygroup bins along the xaxis/yaxis together.
Definition: TH2.cxx:1526
virtual Int_t BufferFill(Double_t x, Double_t y, Double_t w)
accumulate arguments in buffer.
Definition: TH2.cxx:251
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content.
Definition: TH2.cxx:2440
virtual ~TH2()
Destructor.
Definition: TH2.cxx:164
virtual TH2 * RebinY(Int_t ngroup=2, const char *newname="")
Rebin only the Y axis see Rebin2D.
Definition: TH2.cxx:1480
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:279
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
virtual Int_t FindGoodLimits(TH1 *h, Double_t xmin, Double_t xmax)
Compute the best axis limits for the X axis.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
Definition: THashList.h:34
Linear Algebra Package.
Definition: TMatrixTBase.h:85
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition: TNamed.cxx:164
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
An array of TObjects.
Definition: TObjArray.h:37
virtual void Expand(Int_t newSize)
Expand or shrink the array to newSize elements.
Definition: TObjArray.cxx:386
Collectable string class.
Definition: TObjString.h:28
TString & String()
Definition: TObjString.h:48
Mother of all ROOT objects.
Definition: TObject.h:37
virtual const char * GetName() const
Returns name of object.
Definition: TObject.cxx:357
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:172
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:866
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition: TObject.cxx:443
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:880
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition: TObject.cxx:854
Profile Histogram.
Definition: TProfile.h:32
virtual Double_t Rndm()
Machine independent random number generator.
Definition: TRandom.cxx:541
Basic string class.
Definition: TString.h:131
void ToLower()
Change string to lower-case.
Definition: TString.cxx:1125
Ssiz_t First(char c) const
Find first occurrence of a character c.
Definition: TString.cxx:499
const char * Data() const
Definition: TString.h:364
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition: TString.h:687
void ToUpper()
Change string to upper case.
Definition: TString.cxx:1138
Bool_t IsNull() const
Definition: TString.h:402
TString & Remove(Ssiz_t pos)
Definition: TString.h:668
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition: TString.cxx:2311
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:619
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition: TString.h:634
virtual void SetShowProjection(const char *option, Int_t nbins)=0
virtual Int_t MakeCuts(char *cutsopt)=0
virtual Bool_t IsInside(Int_t x, Int_t y)=0
TVirtualPad is an abstract base class for the Pad and Canvas classes.
Definition: TVirtualPad.h:50
virtual TVirtualPad * cd(Int_t subpadnumber=0)=0
const Double_t sigma
return c1
Definition: legend1.C:41
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
TH1F * h1
Definition: legend1.C:5
TF1 * f1
Definition: legend1.C:11
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculate a gaussian function with mean and sigma.
Definition: TMath.cxx:448
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:212
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Definition: TMath.cxx:621
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754
Definition: TMath.h:889
Double_t Floor(Double_t x)
Definition: TMath.h:691
Double_t Log(Double_t x)
Definition: TMath.h:748
Double_t Sqrt(Double_t x)
Definition: TMath.h:679
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
Definition: TMath.cxx:663
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Definition: TMathBase.h:278
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
fill
Definition: fit1_py.py:6
auto * m
Definition: textangle.C:8