Logo ROOT   6.18/05
Reference Guide
RooGaussKronrodIntegrator1D.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitCore *
4 * @(#)root/roofitcore:$Id$
5 * Authors: *
6 * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
7 * DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
8 * *
9 * Copyright (c) 2000-2005, Regents of the University of California *
10 * and Stanford University. All rights reserved. *
11 * *
12 * Redistribution and use in source and binary forms, *
13 * with or without modification, are permitted according to the terms *
14 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15 *****************************************************************************/
16
17/**
18\file RooGaussKronrodIntegrator1D.cxx
19\class RooGaussKronrodIntegrator1D
20\ingroup Roofitcore
21
22RooGaussKronrodIntegrator1D implements the Gauss-Kronrod integration algorithm.
23
24An Gaussian quadrature method for numerical integration in which
25error is estimation based on evaluation at special points known as
26"Kronrod points." By suitably picking these points, abscissas from
27previous iterations can be reused as part of the new set of points,
28whereas usual Gaussian quadrature would require recomputation of
29all abscissas at each iteration.
30
31This class automatically handles (-inf,+inf) integrals by dividing
32the integration in three regions (-inf,-1), (-1,1), (1,inf) and
33calculating the 1st and 3rd term using a x -> 1/x coordinate
34transformation
35
36This class embeds the Gauss-Kronrod integrator from the GNU
37Scientific Library version 1.5 and applies the 10-, 21-, 43- and
3887-point rule in succession until the required target precision is
39reached
40**/
41
42
43
44#include "RooFit.h"
45
46#include <assert.h>
47#include <math.h>
48#include <float.h>
49#include "Riostream.h"
50#include "TMath.h"
52#include "RooArgSet.h"
53#include "RooRealVar.h"
54#include "RooNumber.h"
55#include "RooNumIntFactory.h"
57#include "RooMsgService.h"
58
59
60using namespace std;
61
63;
64
65
66// --- From GSL_MATH.h -------------------------------------------
67struct gsl_function_struct
68{
69 double (* function) (double x, void * params);
70 void * params;
71};
72typedef struct gsl_function_struct gsl_function ;
73#define GSL_FN_EVAL(F,x) (*((F)->function))(x,(F)->params)
74//----From GSL_INTEGRATION.h ---------------------------------------
76 double a, double b,
77 double epsabs, double epsrel,
78 double *result, double *abserr,
79 size_t * neval);
80//-------------------------------------------------------------------
81
82
83
84////////////////////////////////////////////////////////////////////////////////
85/// Register RooGaussKronrodIntegrator1D, its parameters and capabilities with RooNumIntConfig
86
88{
90}
91
92
93
94////////////////////////////////////////////////////////////////////////////////
95/// coverity[UNINIT_CTOR]
96/// Default constructor
97
99{
100}
101
102
103
104////////////////////////////////////////////////////////////////////////////////
105/// Construct integral on 'function' using given configuration object. The integration
106/// range is taken from the definition in the function binding
107
110 _epsAbs(config.epsRel()),
111 _epsRel(config.epsAbs())
112{
115}
116
117
118
119////////////////////////////////////////////////////////////////////////////////
120/// Construct integral on 'function' using given configuration object in the given range
121
123 Double_t xmin, Double_t xmax, const RooNumIntConfig& config) :
125 _epsAbs(config.epsRel()),
126 _epsRel(config.epsAbs()),
127 _xmin(xmin),
128 _xmax(xmax)
129{
132}
133
134
135
136////////////////////////////////////////////////////////////////////////////////
137/// Clone integrator with given function and configuration. Needed for RooNumIntFactory
138
140{
141 return new RooGaussKronrodIntegrator1D(function,config) ;
142}
143
144
145
146////////////////////////////////////////////////////////////////////////////////
147/// Perform one-time initialization of integrator
148
150{
151 // Allocate coordinate buffer size after number of function dimensions
153
154 return checkLimits();
155}
156
157
158
159////////////////////////////////////////////////////////////////////////////////
160/// Destructor
161
163{
164 if (_x) {
165 delete[] _x ;
166 }
167}
168
169
170
171////////////////////////////////////////////////////////////////////////////////
172/// Change our integration limits. Return kTRUE if the new limits are
173/// ok, or otherwise kFALSE. Always returns kFALSE and does nothing
174/// if this object was constructed to always use our integrand's limits.
175
177{
179 oocoutE((TObject*)0,Eval) << "RooGaussKronrodIntegrator1D::setLimits: cannot override integrand's limits" << endl;
180 return kFALSE;
181 }
182 _xmin= *xmin;
183 _xmax= *xmax;
184 return checkLimits();
185}
186
187
188
189////////////////////////////////////////////////////////////////////////////////
190/// Check that our integration range is finite and otherwise return kFALSE.
191/// Update the limits from the integrand if requested.
192
194{
196 assert(0 != integrand() && integrand()->isValid());
199 }
200 return kTRUE ;
201}
202
203
204
206{
208 return instance->integrand(instance->xvec(x)) ;
209}
210
211
212
213////////////////////////////////////////////////////////////////////////////////
214/// Calculate and return integral
215
217{
218 assert(isValid());
219
220 // Copy yvec to xvec if provided
221 if (yvec) {
222 UInt_t i ; for (i=0 ; i<_function->getDimension()-1 ; i++) {
223 _x[i+1] = yvec[i] ;
224 }
225 }
226
227 // Setup glue function
230 F.params = this ;
231
232 // Return values
233 double result, error;
234 size_t neval = 0 ;
235
236 // Call GSL implementation of integeator
237 gsl_integration_qng (&F, _xmin, _xmax, _epsAbs, _epsRel, &result, &error, &neval);
238
239 return result;
240}
241
242
243// ----------------------------------------------------------------------------
244// ---------- Code below imported from GSL version 1.5 ------------------------
245// ----------------------------------------------------------------------------
246
247/*
248 *
249 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
250 *
251 * This program is free software; you can redistribute it and/or modify
252 * it under the terms of the GNU General Public License as published by
253 * the Free Software Foundation; either version 2 of the License, or (at
254 * your option) any later version.
255 *
256 * This program is distributed in the hope that it will be useful, but
257 * WITHOUT ANY WARRANTY; without even the implied warranty of
258 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
259 * General Public License for more details.
260 *
261 * You should have received a copy of the GNU General Public License
262 * along with this program; if not, write to the Free Software
263 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
264 */
265
266#define GSL_SUCCESS 0
267#define GSL_EBADTOL 13 /* user specified an invalid tolerance */
268#define GSL_ETOL 14 /* failed to reach the specified tolerance */
269#define GSL_ERROR(a,b) oocoutE((TObject*)0,Eval) << "RooGaussKronrodIntegrator1D::integral() ERROR: " << a << endl ; return b ;
270#define GSL_DBL_MIN 2.2250738585072014e-308
271#define GSL_DBL_EPSILON 2.2204460492503131e-16
272
273
274// INCLUDED BELOW #include "qng.c"
275
277 double a, double b,
278 double epsabs, double epsrel,
279 double *result, double *abserr,
280 size_t * neval);
281
282
283
284// INCLUDED BELOW #include "err.c"
285static double rescale_error (double err, const double result_abs, const double result_asc) ;
286
287static double
288rescale_error (double err, const double result_abs, const double result_asc)
289{
290 err = fabs(err) ;
291
292 if (result_asc != 0 && err != 0)
293 {
294 double scale = TMath::Power((200 * err / result_asc), 1.5) ;
295
296 if (scale < 1)
297 {
298 err = result_asc * scale ;
299 }
300 else
301 {
302 err = result_asc ;
303 }
304 }
305 if (result_abs > GSL_DBL_MIN / (50 * GSL_DBL_EPSILON))
306 {
307 double min_err = 50 * GSL_DBL_EPSILON * result_abs ;
308
309 if (min_err > err)
310 {
311 err = min_err ;
312 }
313 }
314
315 return err ;
316}
317
318
319// INCLUDED BELOW #include "qng.h"
320/* Gauss-Kronrod-Patterson quadrature coefficients for use in
321 quadpack routine qng. These coefficients were calculated with
322 101 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov
323 1981. */
324
325/* x1, abscissae common to the 10-, 21-, 43- and 87-point rule */
326static const double x1[5] = {
327 0.973906528517171720077964012084452,
328 0.865063366688984510732096688423493,
329 0.679409568299024406234327365114874,
330 0.433395394129247190799265943165784,
331 0.148874338981631210884826001129720
332} ;
333
334/* w10, weights of the 10-point formula */
335static const double w10[5] = {
336 0.066671344308688137593568809893332,
337 0.149451349150580593145776339657697,
338 0.219086362515982043995534934228163,
339 0.269266719309996355091226921569469,
340 0.295524224714752870173892994651338
341} ;
342
343/* x2, abscissae common to the 21-, 43- and 87-point rule */
344static const double x2[5] = {
345 0.995657163025808080735527280689003,
346 0.930157491355708226001207180059508,
347 0.780817726586416897063717578345042,
348 0.562757134668604683339000099272694,
349 0.294392862701460198131126603103866
350} ;
351
352/* w21a, weights of the 21-point formula for abscissae x1 */
353static const double w21a[5] = {
354 0.032558162307964727478818972459390,
355 0.075039674810919952767043140916190,
356 0.109387158802297641899210590325805,
357 0.134709217311473325928054001771707,
358 0.147739104901338491374841515972068
359} ;
360
361/* w21b, weights of the 21-point formula for abscissae x2 */
362static const double w21b[6] = {
363 0.011694638867371874278064396062192,
364 0.054755896574351996031381300244580,
365 0.093125454583697605535065465083366,
366 0.123491976262065851077958109831074,
367 0.142775938577060080797094273138717,
368 0.149445554002916905664936468389821
369} ;
370
371/* x3, abscissae common to the 43- and 87-point rule */
372static const double x3[11] = {
373 0.999333360901932081394099323919911,
374 0.987433402908088869795961478381209,
375 0.954807934814266299257919200290473,
376 0.900148695748328293625099494069092,
377 0.825198314983114150847066732588520,
378 0.732148388989304982612354848755461,
379 0.622847970537725238641159120344323,
380 0.499479574071056499952214885499755,
381 0.364901661346580768043989548502644,
382 0.222254919776601296498260928066212,
383 0.074650617461383322043914435796506
384} ;
385
386/* w43a, weights of the 43-point formula for abscissae x1, x3 */
387static const double w43a[10] = {
388 0.016296734289666564924281974617663,
389 0.037522876120869501461613795898115,
390 0.054694902058255442147212685465005,
391 0.067355414609478086075553166302174,
392 0.073870199632393953432140695251367,
393 0.005768556059769796184184327908655,
394 0.027371890593248842081276069289151,
395 0.046560826910428830743339154433824,
396 0.061744995201442564496240336030883,
397 0.071387267268693397768559114425516
398} ;
399
400/* w43b, weights of the 43-point formula for abscissae x3 */
401static const double w43b[12] = {
402 0.001844477640212414100389106552965,
403 0.010798689585891651740465406741293,
404 0.021895363867795428102523123075149,
405 0.032597463975345689443882222526137,
406 0.042163137935191811847627924327955,
407 0.050741939600184577780189020092084,
408 0.058379395542619248375475369330206,
409 0.064746404951445885544689259517511,
410 0.069566197912356484528633315038405,
411 0.072824441471833208150939535192842,
412 0.074507751014175118273571813842889,
413 0.074722147517403005594425168280423
414} ;
415
416/* x4, abscissae of the 87-point rule */
417static const double x4[22] = {
418 0.999902977262729234490529830591582,
419 0.997989895986678745427496322365960,
420 0.992175497860687222808523352251425,
421 0.981358163572712773571916941623894,
422 0.965057623858384619128284110607926,
423 0.943167613133670596816416634507426,
424 0.915806414685507209591826430720050,
425 0.883221657771316501372117548744163,
426 0.845710748462415666605902011504855,
427 0.803557658035230982788739474980964,
428 0.757005730685495558328942793432020,
429 0.706273209787321819824094274740840,
430 0.651589466501177922534422205016736,
431 0.593223374057961088875273770349144,
432 0.531493605970831932285268948562671,
433 0.466763623042022844871966781659270,
434 0.399424847859218804732101665817923,
435 0.329874877106188288265053371824597,
436 0.258503559202161551802280975429025,
437 0.185695396568346652015917141167606,
438 0.111842213179907468172398359241362,
439 0.037352123394619870814998165437704
440} ;
441
442/* w87a, weights of the 87-point formula for abscissae x1, x2, x3 */
443static const double w87a[21] = {
444 0.008148377384149172900002878448190,
445 0.018761438201562822243935059003794,
446 0.027347451050052286161582829741283,
447 0.033677707311637930046581056957588,
448 0.036935099820427907614589586742499,
449 0.002884872430211530501334156248695,
450 0.013685946022712701888950035273128,
451 0.023280413502888311123409291030404,
452 0.030872497611713358675466394126442,
453 0.035693633639418770719351355457044,
454 0.000915283345202241360843392549948,
455 0.005399280219300471367738743391053,
456 0.010947679601118931134327826856808,
457 0.016298731696787335262665703223280,
458 0.021081568889203835112433060188190,
459 0.025370969769253827243467999831710,
460 0.029189697756475752501446154084920,
461 0.032373202467202789685788194889595,
462 0.034783098950365142750781997949596,
463 0.036412220731351787562801163687577,
464 0.037253875503047708539592001191226
465} ;
466
467/* w87b, weights of the 87-point formula for abscissae x4 */
468static const double w87b[23] = {
469 0.000274145563762072350016527092881,
470 0.001807124155057942948341311753254,
471 0.004096869282759164864458070683480,
472 0.006758290051847378699816577897424,
473 0.009549957672201646536053581325377,
474 0.012329447652244853694626639963780,
475 0.015010447346388952376697286041943,
476 0.017548967986243191099665352925900,
477 0.019938037786440888202278192730714,
478 0.022194935961012286796332102959499,
479 0.024339147126000805470360647041454,
480 0.026374505414839207241503786552615,
481 0.028286910788771200659968002987960,
482 0.030052581128092695322521110347341,
483 0.031646751371439929404586051078883,
484 0.033050413419978503290785944862689,
485 0.034255099704226061787082821046821,
486 0.035262412660156681033782717998428,
487 0.036076989622888701185500318003895,
488 0.036698604498456094498018047441094,
489 0.037120549269832576114119958413599,
490 0.037334228751935040321235449094698,
491 0.037361073762679023410321241766599
492} ;
493
494
495int
497 double a, double b,
498 double epsabs, double epsrel,
499 double * result, double * abserr, size_t * neval)
500{
501 double fv1[5], fv2[5], fv3[5], fv4[5];
502 double savfun[21]; /* array of function values which have been computed */
503 double res10, res21, res43, res87; /* 10, 21, 43 and 87 point results */
504 double result_kronrod, err ;
505 double resabs; /* approximation to the integral of abs(f) */
506 double resasc; /* approximation to the integral of abs(f-i/(b-a)) */
507
508 const double half_length = 0.5 * (b - a);
509 const double abs_half_length = fabs (half_length);
510 const double center = 0.5 * (b + a);
511 const double f_center = GSL_FN_EVAL(f, center);
512
513 int k ;
514
515 if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))
516 {
517 * result = 0;
518 * abserr = 0;
519 * neval = 0;
520 GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",
522 };
523
524 /* Compute the integral using the 10- and 21-point formula. */
525
526 res10 = 0;
527 res21 = w21b[5] * f_center;
528 resabs = w21b[5] * fabs (f_center);
529
530 for (k = 0; k < 5; k++)
531 {
532 const double abscissa = half_length * x1[k];
533 const double fval1 = GSL_FN_EVAL(f, center + abscissa);
534 const double fval2 = GSL_FN_EVAL(f, center - abscissa);
535 const double fval = fval1 + fval2;
536 res10 += w10[k] * fval;
537 res21 += w21a[k] * fval;
538 resabs += w21a[k] * (fabs (fval1) + fabs (fval2));
539 savfun[k] = fval;
540 fv1[k] = fval1;
541 fv2[k] = fval2;
542 }
543
544 for (k = 0; k < 5; k++)
545 {
546 const double abscissa = half_length * x2[k];
547 const double fval1 = GSL_FN_EVAL(f, center + abscissa);
548 const double fval2 = GSL_FN_EVAL(f, center - abscissa);
549 const double fval = fval1 + fval2;
550 res21 += w21b[k] * fval;
551 resabs += w21b[k] * (fabs (fval1) + fabs (fval2));
552 savfun[k + 5] = fval;
553 fv3[k] = fval1;
554 fv4[k] = fval2;
555 }
556
557 resabs *= abs_half_length ;
558
559 {
560 const double mean = 0.5 * res21;
561
562 resasc = w21b[5] * fabs (f_center - mean);
563
564 for (k = 0; k < 5; k++)
565 {
566 resasc +=
567 (w21a[k] * (fabs (fv1[k] - mean) + fabs (fv2[k] - mean))
568 + w21b[k] * (fabs (fv3[k] - mean) + fabs (fv4[k] - mean)));
569 }
570 resasc *= abs_half_length ;
571 }
572
573 result_kronrod = res21 * half_length;
574
575 err = rescale_error ((res21 - res10) * half_length, resabs, resasc) ;
576
577 /* test for convergence. */
578
579 if (err < epsabs || err < epsrel * fabs (result_kronrod))
580 {
581 * result = result_kronrod ;
582 * abserr = err ;
583 * neval = 21;
584 return GSL_SUCCESS;
585 }
586
587 /* compute the integral using the 43-point formula. */
588
589 res43 = w43b[11] * f_center;
590
591 for (k = 0; k < 10; k++)
592 {
593 res43 += savfun[k] * w43a[k];
594 }
595
596 for (k = 0; k < 11; k++)
597 {
598 const double abscissa = half_length * x3[k];
599 const double fval = (GSL_FN_EVAL(f, center + abscissa)
600 + GSL_FN_EVAL(f, center - abscissa));
601 res43 += fval * w43b[k];
602 savfun[k + 10] = fval;
603 }
604
605 /* test for convergence */
606
607 result_kronrod = res43 * half_length;
608 err = rescale_error ((res43 - res21) * half_length, resabs, resasc);
609
610 if (err < epsabs || err < epsrel * fabs (result_kronrod))
611 {
612 * result = result_kronrod ;
613 * abserr = err ;
614 * neval = 43;
615 return GSL_SUCCESS;
616 }
617
618 /* compute the integral using the 87-point formula. */
619
620 res87 = w87b[22] * f_center;
621
622 for (k = 0; k < 21; k++)
623 {
624 res87 += savfun[k] * w87a[k];
625 }
626
627 for (k = 0; k < 22; k++)
628 {
629 const double abscissa = half_length * x4[k];
630 res87 += w87b[k] * (GSL_FN_EVAL(f, center + abscissa)
631 + GSL_FN_EVAL(f, center - abscissa));
632 }
633
634 /* test for convergence */
635
636 result_kronrod = res87 * half_length ;
637
638 err = rescale_error ((res87 - res43) * half_length, resabs, resasc);
639
640 if (err < epsabs || err < epsrel * fabs (result_kronrod))
641 {
642 * result = result_kronrod ;
643 * abserr = err ;
644 * neval = 87;
645 return GSL_SUCCESS;
646 }
647
648 /* failed to converge */
649
650 * result = result_kronrod ;
651 * abserr = err ;
652 * neval = 87;
653
654 // GSL_ERROR("failed to reach tolerance with highest-order rule", GSL_ETOL) ;
655 return GSL_ETOL ;
656}
#define b(i)
Definition: RSha256.hxx:100
#define f(i)
Definition: RSha256.hxx:104
struct gsl_function_struct gsl_function
#define GSL_ERROR(a, b)
static const double x2[5]
static double rescale_error(double err, const double result_abs, const double result_asc)
static const double w10[5]
#define GSL_EBADTOL
#define GSL_DBL_EPSILON
static const double w43a[10]
static const double x4[22]
static const double w21b[6]
static const double x1[5]
double RooGaussKronrodIntegrator1D_GSL_GlueFunction(double x, void *data)
static const double w87a[21]
static const double w21a[5]
static const double w43b[12]
static const double x3[11]
#define GSL_SUCCESS
#define GSL_FN_EVAL(F, x)
static const double w87b[23]
int gsl_integration_qng(const gsl_function *f, double a, double b, double epsabs, double epsrel, double *result, double *abserr, size_t *neval)
#define GSL_DBL_MIN
#define oocoutE(o, a)
Definition: RooMsgService.h:47
unsigned int UInt_t
Definition: RtypesCore.h:42
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
const Bool_t kTRUE
Definition: RtypesCore.h:87
#define ClassImp(name)
Definition: Rtypes.h:365
float xmin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
Abstract interface for evaluating a real-valued function of one real variable and performing numerica...
Definition: RooAbsFunc.h:23
virtual Double_t getMinLimit(UInt_t dimension) const =0
virtual Double_t getMaxLimit(UInt_t dimension) const =0
UInt_t getDimension() const
Definition: RooAbsFunc.h:29
RooAbsIntegrator is the abstract interface for integrators of real-valued functions that implement th...
Double_t integrand(const Double_t x[]) const
const RooAbsFunc * _function
const RooAbsFunc * integrand() const
Bool_t isValid() const
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooGaussKronrodIntegrator1D implements the Gauss-Kronrod integration algorithm.
friend double RooGaussKronrodIntegrator1D_GSL_GlueFunction(double x, void *data)
Bool_t initialize()
Perform one-time initialization of integrator.
RooGaussKronrodIntegrator1D()
coverity[UNINIT_CTOR] Default constructor
Double_t _xmax
Lower integration bound.
virtual RooAbsIntegrator * clone(const RooAbsFunc &function, const RooNumIntConfig &config) const
Clone integrator with given function and configuration. Needed for RooNumIntFactory.
virtual Bool_t checkLimits() const
Check that our integration range is finite and otherwise return kFALSE.
virtual Double_t integral(const Double_t *yvec=0)
Calculate and return integral.
Bool_t setLimits(Double_t *xmin, Double_t *xmax)
Change our integration limits.
static void registerIntegrator(RooNumIntFactory &fact)
Register RooGaussKronrodIntegrator1D, its parameters and capabilities with RooNumIntConfig.
RooNumIntConfig holds the configuration parameters of the various numeric integrators used by RooReal...
RooNumIntFactory is a factory to instantiate numeric integrators from a given function binding and a ...
Bool_t storeProtoIntegrator(RooAbsIntegrator *proto, const RooArgSet &defConfig, const char *depName="")
Method accepting registration of a prototype numeric integrator along with a RooArgSet of its default...
Mother of all ROOT objects.
Definition: TObject.h:37
Double_t x[n]
Definition: legend1.C:17
#define F(x, y, z)
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
void function(const Char_t *name_, T fun, const Char_t *docstring=0)
Definition: RExports.h:151
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Definition: TMath.h:723
auto * a
Definition: textangle.C:12