84 Bool_t showProg) : _showProgress(showProg)
93 if(0 != strlen(
f.getUnit()) || 0 != strlen(
x.getUnit())) {
95 if(0 != strlen(
f.getUnit())) {
99 if(0 != strlen(
x.getUnit())) {
110 funcPtr=
f.bindVars(
x,normVars,
kTRUE);
113 if(scaleFactor != 1) {
117 assert(0 != funcPtr);
121 list<Double_t>* hint =
f.plotSamplingHint(
x,xlo,xhi) ;
122 addPoints(*funcPtr,xlo,xhi,xbins+1,prec,resolution,wmode,nEvalError,doEEVal,eeVal,hint);
133 if(rawPtr)
delete rawPtr;
138 for (i=0 ; i<
GetN() ; i++) {
162 addPoints(func,xlo,xhi,minPoints+1,prec,resolution,wmode,nEvalError,doEEVal,eeVal);
168 for (i=0 ; i<
GetN() ; i++) {
191 deque<Double_t> pointList ;
196 for (i1=0 ; i1<n1 ; i1++) {
198 pointList.push_back(
x) ;
203 for (i2=0 ; i2<n2 ; i2++) {
205 pointList.push_back(
x) ;
209 sort(pointList.begin(),pointList.end()) ;
212 deque<double>::iterator iter ;
214 for (iter=pointList.begin() ; iter!=pointList.end() ; ++iter) {
216 if ((*iter-last)>1
e-10) {
218 addPoint(*iter,scale1*
c1.interpolate(*iter)+scale2*
c2.interpolate(*iter)) ;
260 for (i=1 ; i<
GetN()-1 ; i++) {
263 if (
y<minVal) minVal=
y ;
264 if (
y>maxVal) maxVal=
y ;
268 for (i=1 ; i<
GetN()-1 ; i++) {
298 if(minPoints <= 0 || xhi <= xlo) {
308 minPoints = samplingHint->size() ;
312 Double_t dx= (xhi-xlo)/(minPoints-1.);
317 list<Double_t>* xval = samplingHint ;
319 xval =
new list<Double_t> ;
320 for(step= 0; step < minPoints; step++) {
321 xval->push_back(xlo + step*dx) ;
329 for(list<Double_t>::iterator iter = xval->begin() ; iter!=xval->end() ; ++iter,++step) {
332 if (step==minPoints-1) xx-=1
e-15 ;
334 yval[step]= func(&xx);
352 if (yval[step]>
ymax)
ymax=yval[step] ;
353 if (yval[step]<
ymin)
ymin=yval[step] ;
358 Double_t minDx= resolution*(xhi-xlo);
370 list<Double_t>::iterator iter2 = xval->begin() ;
376 if (iter2==xval->end()) {
384 addRange(func,
x1,
x2,yval[step-1],yval[step],prec*yrangeEst,minDx,numee,doEEVal,eeVal);
391 addPoint(xhi+dx,yval[minPoints-1]) ;
399 if (xval != samplingHint) {
442 if((xmid -
x1 >= minDx) &&
fabs(dy)>0 &&
fabs(dy) >= minDy) {
444 addRange(func,
x1,xmid,y1,ymid,minDy,minDx,numee,doEEVal,eeVal);
445 addRange(func,xmid,
x2,ymid,y2,minDy,minDx,numee,doEEVal,eeVal);
519 os << IsA()->GetName() ;
529 os <<
indent <<
"--- RooCurve ---" << endl ;
531 os <<
indent <<
" Contains " <<
n <<
" points" << endl;
532 os <<
indent <<
" Graph points:" << endl;
533 for(
Int_t i= 0; i <
n; i++) {
534 os <<
indent << setw(3) << i <<
") x = " <<
fX[i] <<
" , y = " <<
fY[i] << endl;
553#if ROOT_VERSION_CODE >= ROOT_VERSION(4,0,1)
564 for (i=0 ; i<np ; i++) {
570 if (x<xstart || x>xstop) continue ;
582 Double_t pull = (
y>avg) ? ((
y-avg)/eyl) : ((
y-avg)/eyh) ;
589 return chisq / (nbin-nFitParam) ;
602 <<
") invalid range (" << xFirst <<
"," << xLast <<
")" << endl ;
613 Double_t xFirstPt,yFirstPt,xLastPt,yLastPt ;
620 if (ilast-ifirst==1 &&(xFirstPt-xFirst)<-1*tolerance && (xLastPt-xLast)>tolerance) {
621 return 0.5*(yFirst+yLast) ;
626 if ((xFirstPt-xFirst)<-1*tolerance) {
633 if ((xLastPt-xLast)>tolerance) {
641 sum += (xFirstPt-xFirst)*(yFirst+yFirstPt)/2 ;
645 for (i=ifirst ; i<ilast ; i++) {
652 sum += (xLast-xLastPt)*(yLastPt+yLast)/2 ;
653 return sum/(xLast-xFirst) ;
664 Double_t delta(std::numeric_limits<double>::max()),
x,
y ;
667 for (i=0 ; i<
n ; i++) {
669 if (
fabs(xvalue-
x)<delta) {
670 delta =
fabs(xvalue-
x) ;
675 return (delta<tolerance)?ibest:-1 ;
695 if (
fabs(xbest-xvalue)<tolerance) {
707 if (xother==xbest)
return ybest ;
708 retVal = ybest + (yother-ybest)*(xvalue-xbest)/(xother-xbest) ;
716 if (xother==xbest)
return ybest ;
717 retVal = yother + (ybest-yother)*(xvalue-xother)/(xbest-xother) ;
739 vector<double> bandLo(
GetN()) ;
740 vector<double> bandHi(
GetN()) ;
741 for (
int i=0 ; i<
GetN() ; i++) {
745 for (
int i=0 ; i<
GetN() ; i++) {
748 for (
int i=
GetN()-1 ; i>=0 ; i--) {
771 vector<double> bandLo(
GetN()) ;
772 vector<double> bandHi(
GetN()) ;
773 for (
int i=0 ; i<
GetN() ; i++) {
777 for (
int i=0 ; i<
GetN() ; i++) {
780 for (
int i=
GetN()-1 ; i>=0 ; i--) {
796 vector<double> y_plus(plusVar.size()), y_minus(minusVar.size()) ;
798 for (vector<RooCurve*>::const_iterator iter=plusVar.begin() ; iter!=plusVar.end() ; ++iter) {
799 y_plus[j++] = (*iter)->interpolate(
GetX()[i]) ;
802 for (vector<RooCurve*>::const_iterator iter=minusVar.begin() ; iter!=minusVar.end() ; ++iter) {
803 y_minus[j++] = (*iter)->interpolate(
GetX()[i]) ;
810 for (j=0 ; j<
n ; j++) {
811 F[j] = (y_plus[j]-y_minus[j])/2 ;
827 vector<double>
y(variations.size()) ;
829 for (vector<RooCurve*>::const_iterator iter=variations.begin() ; iter!=variations.end() ; ++iter) {
830 y[j++] = (*iter)->interpolate(
GetX()[i]) ;
837 sort(
y.begin(),
y.end()) ;
839 hi =
y[
y.size()-delta] ;
843 for (
unsigned int k=0 ; k<
y.size() ; k++) {
845 sum_ysq +=
y[k]*
y[k] ;
848 sum_ysq /=
y.size() ;
851 lo =
GetY()[i] - Z*rms ;
868 for(
Int_t i= 0; i <
n; i++) {
877 for(
Int_t i= 2; i <
n-2; i++) {
885 cout <<
"RooCurve::isIdentical[" << i <<
"] Y tolerance exceeded (" << rdy <<
">" << tol
886 <<
"), X=" << other.
fX[i] <<
"(" <<
fX[i] <<
")" <<
" Ytest=" << yTest <<
" Yref=" << other.
fY[i] <<
" range = " << Yrange << endl ;
static const double x2[5]
static const double x1[5]
static void indent(ostringstream &buf, int indent_level)
float type_of_call hi(const int &, const int &)
char * Form(const char *fmt,...)
Abstract interface for evaluating a real-valued function of one real variable and performing numerica...
RooAbsRealLValue is the common abstract base class for objects that represent a real value that may a...
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
static Int_t numEvalErrors()
Return the number of logged evaluation errors since the last clearing.
static void printEvalErrors(std::ostream &os=std::cout, Int_t maxPerNode=10000000)
Print all outstanding logged evaluation error on the given ostream.
static void clearEvalErrorLog()
Clear the stack of evaluation error messages.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
A RooCurve is a one-dimensional graphical representation of a real-valued function.
void addPoints(const RooAbsFunc &func, Double_t xlo, Double_t xhi, Int_t minPoints, Double_t prec, Double_t resolution, WingMode wmode, Int_t numee=0, Bool_t doEEVal=kFALSE, Double_t eeVal=0., std::list< Double_t > *samplingHint=0)
Add points calculated with the specified function, over the range (xlo,xhi).
void initialize()
Perform initialization that is common to all curves.
void addPoint(Double_t x, Double_t y)
Add a point with the specified coordinates. Update our y-axis limits.
Double_t chiSquare(const RooHist &hist, int nFitParam) const
Calculate the chi^2/NDOF of this curve with respect to the histogram 'hist' accounting nFitParam floa...
Double_t average(Double_t lo, Double_t hi) const
Return average curve value in [xFirst,xLast] by integrating curve between points and dividing by xLas...
void addRange(const RooAbsFunc &func, Double_t x1, Double_t x2, Double_t y1, Double_t y2, Double_t minDy, Double_t minDx, Int_t numee=0, Bool_t doEEVal=kFALSE, Double_t eeVal=0.)
Fill the range (x1,x2) with points calculated using func(&x).
void shiftCurveToZero(Double_t prevYMax)
Find lowest point in curve and move all points in curve so that lowest point will go exactly through ...
virtual ~RooCurve()
Destructor.
RooCurve * makeErrorBand(const std::vector< RooCurve * > &variations, Double_t Z=1) const
Construct filled RooCurve represented error band that captures alpha% of the variations of the curves...
virtual void printName(std::ostream &os) const
Print name of object.
RooCurve()
Default constructor.
Bool_t isIdentical(const RooCurve &other, Double_t tol=1e-6) const
Return true if curve is identical to other curve allowing for given absolute tolerance on each point ...
Double_t getFitRangeNEvt() const
Return the number of events associated with the plotable object, it is always 1 for curves.
virtual void printClassName(std::ostream &os) const
Print the class name of this curve.
virtual void printMultiline(std::ostream &os, Int_t contents, Bool_t verbose=kFALSE, TString indent="") const
Print the details of this curve.
Double_t interpolate(Double_t x, Double_t tolerance=1e-10) const
Return linearly interpolated value of curve at xvalue.
virtual void printTitle(std::ostream &os) const
Print the title of this curve.
Int_t findPoint(Double_t value, Double_t tolerance=1e-10) const
Find the nearest point to xvalue.
Double_t getFitRangeBinW() const
Get the bin width associated with this plotable object.
void calcBandInterval(const std::vector< RooCurve * > &variations, Int_t i, Double_t Z, Double_t &lo, Double_t &hi, Bool_t approxGauss) const
A RooHist is a graphical representation of binned data based on the TGraphAsymmErrors class.
static Double_t infinity()
Return internal infinity representation.
Double_t getYAxisMin() const
void updateYAxisLimits(Double_t y)
Double_t getYAxisMax() const
void setYAxisLimits(Double_t ymin, Double_t ymax)
void setYAxisLabel(const char *label)
Lightweight RooAbsFunction implementation that applies a constant scale factor to another RooAbsFunc.
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Double_t * GetEXhigh() const
Double_t * GetEYlow() const
Double_t * GetEXlow() const
Double_t * GetEYhigh() const
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
virtual void SetName(const char *name="")
Set graph name.
virtual void SetTitle(const char *title="")
Change (i.e.
Double_t * fY
[fNpoints] array of Y points
Double_t * fX
[fNpoints] array of X points
virtual Int_t GetPoint(Int_t i, Double_t &x, Double_t &y) const
Get x and y values for point number i.
virtual const char * GetTitle() const
Returns title of object.
virtual const char * GetName() const
Returns name of object.
const char * Data() const
TString & Append(const char *cs)
std::string GetName(const std::string &scope_name)
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
Double_t Erfc(Double_t x)
Compute the complementary error function erfc(x).
static long int sum(long int i)