93HybridCalculatorOriginal::HybridCalculatorOriginal(
const char *
name) :
98 fNuisanceParameters(0),
101 fGenerateBinned(false),
102 fUsePriorPdf(false), fTmpDoExtended(true)
125 fNuisanceParameters(nuisance_parameters),
128 fGenerateBinned(GenerateBinned),
167 fNuisanceParameters(nuisance_parameters),
170 fGenerateBinned(GenerateBinned),
194 fSbModel(sbModel.GetPdf()),
195 fBModel(bModel.GetPdf()),
197 fNuisanceParameters((sbModel.GetNuisanceParameters()) ? sbModel.GetNuisanceParameters() : bModel.GetNuisanceParameters()),
198 fPriorPdf((sbModel.GetPriorPdf()) ? sbModel.GetPriorPdf() : bModel.GetPriorPdf()),
200 fGenerateBinned(GenerateBinned),
273 double testStatData = 0;
277 testStatData = nEvents;
283 double sb_nll_val = sb_nll.
getVal();
286 double b_nll_val = b_nll.
getVal();
287 double m2lnQ = 2*(sb_nll_val-b_nll_val);
288 testStatData = m2lnQ;
292 double sb_nll_val = sb_nll.
getVal();
295 double b_nll_val = b_nll.
getVal();
296 double m2lnQ = 2*(sb_nll_val-b_nll_val);
297 testStatData = m2lnQ;
305 testStatData = m2lnQ;
310 testStatData = m2lnQ;
314 std::cout <<
"Test statistics has been evaluated for data\n";
326 std::vector<double> bVals;
327 bVals.reserve(nToys);
329 std::vector<double> sbVals;
330 sbVals.reserve(nToys);
332 RunToys(bVals,sbVals,nToys,usePriors);
351 std::cout <<
"HybridCalculatorOriginal: run " << nToys <<
" toy-MC experiments\n";
353 if (usePriors) std::cout <<
"marginalize nuisance parameters \n";
363 std::vector<double> parameterValues;
367 if (usePriors && nParameters>0) {
369 parameterValues.resize(nParameters);
370 for (
int iParameter=0; iParameter<nParameters; iParameter++) {
372 parameterValues[iParameter] = oneParam->
getVal();
383 if (sbparams) originalSbParams.
addClone(*sbparams);
384 if (bparams) originalBParams.
addClone(*bparams);
392 for (
unsigned int iToy=0; iToy<nToys; iToy++) {
397 std::cout <<
"....... toy number " << iToy <<
" / " << nToys << std::endl;
401 if (usePriors && nParameters>0) {
404 for (
int iParameter=0; iParameter<nParameters; iParameter++) {
422 bool bIsEmpty =
false;
441 bool sbIsEmpty =
false;
451 if (usePriors && nParameters>0) {
452 for (
int iParameter=0; iParameter<nParameters; iParameter++) {
454 oneParam->
setVal(parameterValues[iParameter]);
459 for (
int hypoTested=0; hypoTested<=1; hypoTested++) {
461 bool dataIsEmpty = sbIsEmpty;
462 if ( hypoTested==1 ) { dataToTest = bData; dataIsEmpty = bIsEmpty; }
466 if ( !dataIsEmpty ) nEvents = dataToTest->
numEntries();
467 if ( hypoTested==0 ) sbVals.push_back(nEvents);
468 else bVals.push_back(nEvents);
473 double sb_nll_val = sb_nll.
getVal();
476 double b_nll_val = b_nll.
getVal();
477 double m2lnQ = -2*(b_nll_val-sb_nll_val);
478 if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
479 else bVals.push_back(m2lnQ);
483 double sb_nll_val = sb_nll.
getVal();
486 double b_nll_val = b_nll.
getVal();
487 double m2lnQ = -2*(b_nll_val-sb_nll_val);
488 if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
489 else bVals.push_back(m2lnQ);
496 if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
497 else bVals.push_back(m2lnQ);
502 if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
503 else bVals.push_back(m2lnQ);
517 *sbparams = originalSbParams;
523 *bparams = originalBParams;
534 if (usePriors && nParameters>0) {
535 for (
int iParameter=0; iParameter<nParameters; iParameter++) {
537 oneParam->
setVal(parameterValues[iParameter]);
551 std::cout <<
"Signal plus background model:\n";
556 std::cout <<
"\nBackground model:\n";
561 std::cout <<
"\nObservables:\n";
566 std::cout <<
"\nParameters being integrated:\n";
571 std::cout <<
"\nPrior PDF model for integration:\n";
588 std::cerr <<
"Error in HybridCalculatorOriginal::GetHypoTest - invalid data type - return NULL" << std::endl;
598 std::cerr <<
"Error in HybridCalculatorOriginal - data have not been set" << std::endl;
605 std::cerr <<
"Error in HybridCalculatorOriginal - no observables" << std::endl;
610 std::cerr <<
"Error in HybridCalculatorOriginal - S+B pdf has not been set " << std::endl;
615 std::cerr <<
"Error in HybridCalculatorOriginal - B pdf has not been set" << std::endl;
619 std::cerr <<
"Error in HybridCalculatorOriginal - nuisance parameters have not been set " << std::endl;
623 std::cerr <<
"Error in HybridCalculatorOriginal - prior pdf has not been set " << std::endl;
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE)
Add the specified argument to list.
virtual void Print(Option_t *options=0) const
This method must be overridden when a class wants to print itself.
RooAbsData is the common abstract base class for binned and unbinned datasets.
virtual const RooArgSet * get() const
virtual Double_t sumEntries() const =0
virtual Int_t numEntries() const
RooDataSet * generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none())
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
virtual RooDataHist * generateBinned(const RooArgSet &whatVars, Double_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none())
As RooAbsPdf::generateBinned(const RooArgSet&, const RooCmdArg&,const RooCmdArg&, const RooCmdArg&,...
Double_t getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooAbsArg * at(Int_t idx) const
Return object at given index, or nullptr if index is out of range.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Double_t getRealValue(const char *name, Double_t defVal=0, Bool_t verbose=kFALSE) const
Get value of a RooAbsReal stored in set with given name.
virtual void addClone(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling addOwned() for each element in the source...
The RooDataHist is a container class to hold N-dimensional binned data.
RooDataSet is a container class to hold unbinned data.
virtual const RooArgSet * get(Int_t index) const
Return RooArgSet with coordinates of event 'index'.
Class RooNLLVar implements a a -log(likelihood) calculation from a dataset and a PDF.
RooRealVar represents a fundamental (non-derived) real valued object.
virtual void setVal(Double_t value)
Set value of variable to 'value'.
HybridCalculatorOriginal class.
void PrintMore(const char *options) const
Print out some information about the input models.
virtual void SetAlternateModel(const ModelConfig &)
Set the model describing the alternate hypothesis.
virtual ~HybridCalculatorOriginal()
Destructor of HybridCalculator.
virtual HybridResult * GetHypoTest() const
inherited methods from HypoTestCalculator interface
void RunToys(std::vector< double > &bVals, std::vector< double > &sbVals, unsigned int nToys, bool usePriors) const
do the actual run-MC processing
virtual void SetNullModel(const ModelConfig &)
Set the model describing the null hypothesis.
unsigned int fTestStatisticsIdx
HybridCalculatorOriginal(const char *name=0)
Dummy Constructor with only name.
void UseNuisance(bool on=true)
void SetTestStatistic(int index)
set the desired test statistics: index=1 : 2 * log( L_sb / L_b ) (DEFAULT) index=2 : number of genera...
const RooArgSet * fNuisanceParameters
HybridResult * Calculate(TH1 &data, unsigned int nToys, bool usePriors) const
first compute the test statistics for data and then prepare and run the toy-MC experiments
bool DoCheckInputs() const
RooArgList * fObservables
void SetNumberOfToys(unsigned int ntoys)
Class encapsulating the result of the HybridCalculatorOriginal.
void SetDataTestStatistics(double testStat_data_val)
set the value of the test statistics on data
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return NULL if not existing)
The TNamed class is the base class for all named ROOT classes.
virtual const char * GetName() const
Returns name of object.
RooCmdArg Strategy(Int_t code)
RooCmdArg Extended(Bool_t flag=kTRUE)
RooCmdArg Hesse(Bool_t flag=kTRUE)
RooCmdArg CloneData(Bool_t flag)
RooCmdArg PrintLevel(Int_t code)
Namespace for the RooStats classes.