Logo ROOT   6.18/05
Reference Guide
HybridCalculatorOriginal.h
Go to the documentation of this file.
1// @(#)root/roostats:$Id$
2
3/*************************************************************************
4 * Project: RooStats *
5 * Package: RooFit/RooStats *
6 * Authors: *
7 * Danilo Piparo, Gregory Schott *
8 *************************************************************************
9 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
10 * All rights reserved. *
11 * *
12 * For the licensing terms see $ROOTSYS/LICENSE. *
13 * For the list of contributors see $ROOTSYS/README/CREDITS. *
14 *************************************************************************/
15
16#ifndef ROOSTATS_HybridCalculatorOriginal
17#define ROOSTATS_HybridCalculatorOriginal
18
20
21#include <vector>
22
23
25
27
28class TH1;
29
30namespace RooStats {
31
32 class HybridResult;
33
35
36 public:
37
38
39 /// Dummy Constructor with only name
40 explicit HybridCalculatorOriginal(const char *name = 0);
41
42 /// Constructor for HybridCalculator from pdf instances but without a data-set
44 RooAbsPdf& b_model,
45 RooArgList& observables,
46 const RooArgSet* nuisance_parameters = 0,
47 RooAbsPdf* prior_pdf = 0,
48 bool GenerateBinned = false, int testStatistics = 1, int ntoys = 1000 );
49
50 /// Constructor for HybridCalculator using a data set and pdf instances
52 RooAbsPdf& sb_model,
53 RooAbsPdf& b_model,
54 const RooArgSet* nuisance_parameters = 0,
55 RooAbsPdf* prior_pdf = 0,
56 bool GenerateBinned = false, int testStatistics = 1, int ntoys = 1000 );
57
58
59 /// Constructor passing a ModelConfig for the SBmodel and a ModelConfig for the B Model
61 const ModelConfig& sb_model,
62 const ModelConfig& b_model,
63 bool GenerateBinned = false, int testStatistics = 1, int ntoys = 1000 );
64
65
66 public:
67
68 /// Destructor of HybridCalculator
70
71 /// inherited methods from HypoTestCalculator interface
72 virtual HybridResult* GetHypoTest() const;
73
74 // inherited setter methods from HypoTestCalculator
75
76
77 // set the model for the null hypothesis (only B)
78 virtual void SetNullModel(const ModelConfig & );
79 // set the model for the alternate hypothesis (S+B)
80 virtual void SetAlternateModel(const ModelConfig & );
81
82
83 // Set a common PDF for both the null and alternate
84 virtual void SetCommonPdf(RooAbsPdf & pdf) { fSbModel = &pdf; }
85 // Set the PDF for the null (only B)
86 virtual void SetNullPdf(RooAbsPdf& pdf) { fBModel = &pdf; }
87 // Set the PDF for the alternate hypothesis ( i.e. S+B)
88 virtual void SetAlternatePdf(RooAbsPdf& pdf) { fSbModel = &pdf; }
89
90 // Set the DataSet
91 virtual void SetData(RooAbsData& data) { fData = &data; }
92
93 // set parameter values for the null if using a common PDF
94 virtual void SetNullParameters(const RooArgSet& ) { } // not needed
95 // set parameter values for the alternate if using a common PDF
96 virtual void SetAlternateParameters(const RooArgSet&) {} // not needed
97
98 // additional methods specific for HybridCalculator
99 // set a prior pdf for the nuisance parameters
100 void SetNuisancePdf(RooAbsPdf & prior_pdf) {
101 fPriorPdf = &prior_pdf;
102 fUsePriorPdf = true; // if set by default turn it on
103 }
104
105 // set the nuisance parameters to be marginalized
106 void SetNuisanceParameters(const RooArgSet & params) { fNuisanceParameters = &params; }
107
108 // set number of toy MC (Default is 1000)
109 void SetNumberOfToys(unsigned int ntoys) { fNToys = ntoys; }
110
111 // return number of toys used
112 unsigned int GetNumberOfToys() const { return fNToys; }
113
114 // control use of the pdf for the nuisance parameter and marginalize them
115 void UseNuisance(bool on = true) { fUsePriorPdf = on; }
116
117 // control to use bin data generation
118 void SetGenerateBinned(bool on = true) { fGenerateBinned = on; }
119
120 /// set the desired test statistics:
121 /// index=1 : 2 * log( L_sb / L_b ) (DEFAULT)
122 /// index=2 : number of generated events
123 /// index=3 : profiled likelihood ratio
124 /// if the index is different to any of those values, the default is used
125 void SetTestStatistic(int index);
126
127 HybridResult* Calculate(TH1& data, unsigned int nToys, bool usePriors) const;
128 HybridResult* Calculate(RooAbsData& data, unsigned int nToys, bool usePriors) const;
129 HybridResult* Calculate(unsigned int nToys, bool usePriors) const;
130 void PrintMore(const char* options) const;
131
132 void PatchSetExtended(bool on = true) { fTmpDoExtended = on; std::cout << "extended patch set to " << on << std::endl; } // patch to test with RooPoisson (or other non-extended models)
133
134 private:
135
136 void RunToys(std::vector<double>& bVals, std::vector<double>& sbVals, unsigned int nToys, bool usePriors) const;
137
138 // check input parameters before performing the calculation
139 bool DoCheckInputs() const;
140
141 unsigned int fTestStatisticsIdx; // Index of the test statistics to use
142 unsigned int fNToys; // number of Toys MC
143 RooAbsPdf* fSbModel; // The pdf of the signal+background model
144 RooAbsPdf* fBModel; // The pdf of the background model
145 mutable RooArgList* fObservables; // Collection of the observables of the model
146 const RooArgSet* fNuisanceParameters; // Collection of the nuisance parameters in the model
147 RooAbsPdf* fPriorPdf; // Prior PDF of the nuisance parameters
148 RooAbsData * fData; // pointer to the data sets
149 bool fGenerateBinned; //Flag to control binned generation
150 bool fUsePriorPdf; // use a prior for nuisance parameters
152
153// TString fSbModelName; // name of pdf of the signal+background model
154// TString fBModelName; // name of pdf of the background model
155// TString fPriorPdfName; // name of pdf of the background model
156// TString fDataName; // name of the dataset in the workspace
157
158 protected:
159 ClassDef(HybridCalculatorOriginal,1) // Hypothesis test calculator using a Bayesian-frequentist hybrid method
160 };
161
162}
163
164#endif
#define ClassDef(name, id)
Definition: Rtypes.h:326
char name[80]
Definition: TGX11.cxx:109
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
HybridCalculatorOriginal class.
virtual void SetAlternatePdf(RooAbsPdf &pdf)
virtual void SetAlternateParameters(const RooArgSet &)
void PrintMore(const char *options) const
Print out some information about the input models.
virtual void SetAlternateModel(const ModelConfig &)
Set the model describing the alternate hypothesis.
virtual ~HybridCalculatorOriginal()
Destructor of HybridCalculator.
virtual void SetNullParameters(const RooArgSet &)
virtual HybridResult * GetHypoTest() const
inherited methods from HypoTestCalculator interface
void RunToys(std::vector< double > &bVals, std::vector< double > &sbVals, unsigned int nToys, bool usePriors) const
do the actual run-MC processing
virtual void SetNullModel(const ModelConfig &)
Set the model describing the null hypothesis.
virtual void SetData(RooAbsData &data)
HybridCalculatorOriginal(const char *name=0)
Dummy Constructor with only name.
virtual void SetCommonPdf(RooAbsPdf &pdf)
void SetTestStatistic(int index)
set the desired test statistics: index=1 : 2 * log( L_sb / L_b ) (DEFAULT) index=2 : number of genera...
virtual void SetNullPdf(RooAbsPdf &pdf)
HybridResult * Calculate(TH1 &data, unsigned int nToys, bool usePriors) const
first compute the test statistics for data and then prepare and run the toy-MC experiments
void SetNuisanceParameters(const RooArgSet &params)
Class encapsulating the result of the HybridCalculatorOriginal.
Definition: HybridResult.h:25
HypoTestCalculator is an interface class for a tools which produce RooStats HypoTestResults.
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition: ModelConfig.h:30
The TH1 histogram class.
Definition: TH1.h:56
The TNamed class is the base class for all named ROOT classes.
Definition: TNamed.h:29
Namespace for the RooStats classes.
Definition: Asimov.h:20