Logo ROOT   6.18/05
Reference Guide
PtEtaPhiE4D.h
Go to the documentation of this file.
1
2// @(#)root/mathcore:$Id$
3// Authors: W. Brown, M. Fischler, L. Moneta 2005
4
5/**********************************************************************
6* *
7* Copyright (c) 2005 , LCG ROOT FNAL MathLib Team *
8* *
9* *
10**********************************************************************/
11
12// Header file for class PtEtaPhiE4D
13//
14// Created by: fischler at Wed Jul 20 2005
15// based on CylindricalEta4D by moneta
16//
17// Last update: $Id$
18//
19#ifndef ROOT_Math_GenVector_PtEtaPhiE4D
20#define ROOT_Math_GenVector_PtEtaPhiE4D 1
21
22#include "Math/Math.h"
23
25
27
28
29
30//#define TRACE_CE
31#ifdef TRACE_CE
32#include <iostream>
33#endif
34
35#include <cmath>
36
37namespace ROOT {
38
39namespace Math {
40
41//__________________________________________________________________________________________
42/**
43 Class describing a 4D cylindrical coordinate system
44 using Pt , Phi, Eta and E (or rho, phi, eta , T)
45 The metric used is (-,-,-,+).
46 Phi is restricted to be in the range [-PI,PI)
47
48 @ingroup GenVector
49*/
50
51template <class ScalarType>
53
54public :
55
56 typedef ScalarType Scalar;
57
58 // --------- Constructors ---------------
59
60 /**
61 Default constructor gives zero 4-vector
62 */
63 PtEtaPhiE4D() : fPt(0), fEta(0), fPhi(0), fE(0) { }
64
65 /**
66 Constructor from pt, eta, phi, e values
67 */
69 fPt(pt), fEta(eta), fPhi(phi), fE(e) { Restrict(); }
70
71 /**
72 Generic constructor from any 4D coordinate system implementing
73 Pt(), Eta(), Phi() and E()
74 */
75 template <class CoordSystem >
76 explicit PtEtaPhiE4D(const CoordSystem & c) :
77 fPt(c.Pt()), fEta(c.Eta()), fPhi(c.Phi()), fE(c.E()) { }
78
79 // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower
80 // so we decided to re-implement them ( there is no no need to have them with g++4)
81
82 /**
83 copy constructor
84 */
86 fPt(v.fPt), fEta(v.fEta), fPhi(v.fPhi), fE(v.fE) { }
87
88 /**
89 assignment operator
90 */
92 fPt = v.fPt;
93 fEta = v.fEta;
94 fPhi = v.fPhi;
95 fE = v.fE;
96 return *this;
97 }
98
99
100 /**
101 Set internal data based on an array of 4 Scalar numbers
102 */
103 void SetCoordinates( const Scalar src[] )
104 { fPt=src[0]; fEta=src[1]; fPhi=src[2]; fE=src[3]; Restrict(); }
105
106 /**
107 get internal data into an array of 4 Scalar numbers
108 */
109 void GetCoordinates( Scalar dest[] ) const
110 { dest[0] = fPt; dest[1] = fEta; dest[2] = fPhi; dest[3] = fE; }
111
112 /**
113 Set internal data based on 4 Scalar numbers
114 */
116 { fPt=pt; fEta = eta; fPhi = phi; fE = e; Restrict(); }
117
118 /**
119 get internal data into 4 Scalar numbers
120 */
121 void
122 GetCoordinates(Scalar& pt, Scalar & eta, Scalar & phi, Scalar& e) const
123 { pt=fPt; eta=fEta; phi = fPhi; e = fE; }
124
125 // --------- Coordinates and Coordinate-like Scalar properties -------------
126
127 // 4-D Cylindrical eta coordinate accessors
128
129 Scalar Pt() const { return fPt; }
130 Scalar Eta() const { return fEta; }
131 Scalar Phi() const { return fPhi; }
132 Scalar E() const { return fE; }
133
134 Scalar Perp()const { return Pt(); }
135 Scalar Rho() const { return Pt(); }
136 Scalar T() const { return E(); }
137
138 // other coordinate representation
139
140 Scalar Px() const { return fPt * cos(fPhi); }
141 Scalar X () const { return Px(); }
142 Scalar Py() const { return fPt * sin(fPhi); }
143 Scalar Y () const { return Py(); }
144 Scalar Pz() const {
145 return fPt > 0 ? fPt * sinh(fEta) : fEta == 0 ? 0 : fEta > 0 ? fEta - etaMax<Scalar>() : fEta + etaMax<Scalar>();
146 }
147 Scalar Z () const { return Pz(); }
148
149 /**
150 magnitude of momentum
151 */
152 Scalar P() const {
153 return fPt > 0 ? fPt * cosh(fEta)
154 : fEta > etaMax<Scalar>() ? fEta - etaMax<Scalar>()
155 : fEta < -etaMax<Scalar>() ? -fEta - etaMax<Scalar>() : 0;
156 }
157 Scalar R() const { return P(); }
158
159 /**
160 squared magnitude of spatial components (momentum squared)
161 */
162 Scalar P2() const
163 {
164 const Scalar p = P();
165 return p * p;
166 }
167
168 /**
169 vector magnitude squared (or mass squared)
170 */
171 Scalar M2() const
172 {
173 const Scalar p = P();
174 return fE * fE - p * p;
175 }
176 Scalar Mag2() const { return M2(); }
177
178 /**
179 invariant mass
180 */
181 Scalar M() const {
182 const Scalar mm = M2();
183 if (mm >= 0) {
184 return sqrt(mm);
185 } else {
186 GenVector::Throw ("PtEtaPhiE4D::M() - Tachyonic:\n"
187 " Pt and Eta give P such that P^2 > E^2, so the mass would be imaginary");
188 return -sqrt(-mm);
189 }
190 }
191 Scalar Mag() const { return M(); }
192
193 /**
194 transverse spatial component squared
195 */
196 Scalar Pt2() const { return fPt*fPt;}
197 Scalar Perp2() const { return Pt2(); }
198
199 /**
200 transverse mass squared
201 */
202 Scalar Mt2() const { Scalar pz = Pz(); return fE*fE - pz*pz; }
203
204 /**
205 transverse mass
206 */
207 Scalar Mt() const {
208 const Scalar mm = Mt2();
209 if (mm >= 0) {
210 return sqrt(mm);
211 } else {
212 GenVector::Throw ("PtEtaPhiE4D::Mt() - Tachyonic:\n"
213 " Pt and Eta give Pz such that Pz^2 > E^2, so the mass would be imaginary");
214 return -sqrt(-mm);
215 }
216 }
217
218 /**
219 transverse energy
220 */
221 /**
222 transverse energy
223 */
224 Scalar Et() const {
225 return fE / cosh(fEta); // faster using eta
226 }
227
228 /**
229 transverse energy squared
230 */
231 Scalar Et2() const
232 {
233 const Scalar et = Et();
234 return et * et;
235 }
236
237private:
238 inline static Scalar pi() { return M_PI; }
239 inline void Restrict() {
240 if (fPhi <= -pi() || fPhi > pi()) fPhi = fPhi - floor(fPhi / (2 * pi()) + .5) * 2 * pi();
241 }
242public:
243
244 /**
245 polar angle
246 */
247 Scalar Theta() const { return (fPt > 0 ? Scalar(2) * atan(exp(-fEta)) : fEta >= 0 ? 0 : pi()); }
248
249 // --------- Set Coordinates of this system ---------------
250
251 /**
252 set Pt value
253 */
254 void SetPt( Scalar pt) {
255 fPt = pt;
256 }
257 /**
258 set eta value
259 */
260 void SetEta( Scalar eta) {
261 fEta = eta;
262 }
263 /**
264 set phi value
265 */
266 void SetPhi( Scalar phi) {
267 fPhi = phi;
268 Restrict();
269 }
270 /**
271 set E value
272 */
273 void SetE( Scalar e) {
274 fE = e;
275 }
276
277 /**
278 set values using cartesian coordinate system
279 */
280 void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e);
281
282
283 // ------ Manipulations -------------
284
285 /**
286 negate the 4-vector
287 */
288 void Negate( ) {
289 fPhi = ( fPhi > 0 ? fPhi - pi() : fPhi + pi() );
290 fEta = - fEta;
291 fE = - fE;
292 }
293
294 /**
295 Scale coordinate values by a scalar quantity a
296 */
297 void Scale( Scalar a) {
298 if (a < 0) {
299 Negate(); a = -a;
300 }
301 fPt *= a;
302 fE *= a;
303 }
304
305 /**
306 Assignment from a generic coordinate system implementing
307 Pt(), Eta(), Phi() and E()
308 */
309 template <class CoordSystem >
310 PtEtaPhiE4D & operator = (const CoordSystem & c) {
311 fPt = c.Pt();
312 fEta = c.Eta();
313 fPhi = c.Phi();
314 fE = c.E();
315 return *this;
316 }
317
318 /**
319 Exact equality
320 */
321 bool operator == (const PtEtaPhiE4D & rhs) const {
322 return fPt == rhs.fPt && fEta == rhs.fEta
323 && fPhi == rhs.fPhi && fE == rhs.fE;
324 }
325 bool operator != (const PtEtaPhiE4D & rhs) const {return !(operator==(rhs));}
326
327 // ============= Compatibility section ==================
328
329 // The following make this coordinate system look enough like a CLHEP
330 // vector that an assignment member template can work with either
331 Scalar x() const { return X(); }
332 Scalar y() const { return Y(); }
333 Scalar z() const { return Z(); }
334 Scalar t() const { return E(); }
335
336
337
338#if defined(__MAKECINT__) || defined(G__DICTIONARY)
339
340 // ====== Set member functions for coordinates in other systems =======
341
342 void SetPx(Scalar px);
343
344 void SetPy(Scalar py);
345
346 void SetPz(Scalar pz);
347
348 void SetM(Scalar m);
349
350
351#endif
352
353private:
354
355 ScalarType fPt;
356 ScalarType fEta;
357 ScalarType fPhi;
358 ScalarType fE;
359
360};
361
362
363} // end namespace Math
364} // end namespace ROOT
365
366
367
368// move implementations here to avoid circle dependencies
370#if defined(__MAKECINT__) || defined(G__DICTIONARY)
372#endif
373
374namespace ROOT {
375
376namespace Math {
377
378template <class ScalarType>
380 *this = PxPyPzE4D<Scalar> (px, py, pz, e);
381}
382
383
384#if defined(__MAKECINT__) || defined(G__DICTIONARY)
385
386 // ====== Set member functions for coordinates in other systems =======
387
388template <class ScalarType>
390 GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
391 throw e;
392 PxPyPzE4D<Scalar> v(*this); v.SetPx(px); *this = PtEtaPhiE4D<Scalar>(v);
393}
394template <class ScalarType>
395inline void PtEtaPhiE4D<ScalarType>::SetPy(Scalar py) {
396 GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
397 throw e;
398 PxPyPzE4D<Scalar> v(*this); v.SetPy(py); *this = PtEtaPhiE4D<Scalar>(v);
399}
400template <class ScalarType>
401inline void PtEtaPhiE4D<ScalarType>::SetPz(Scalar pz) {
402 GenVector_exception e("PtEtaPhiE4D::SetPx() is not supposed to be called");
403 throw e;
404 PxPyPzE4D<Scalar> v(*this); v.SetPz(pz); *this = PtEtaPhiE4D<Scalar>(v);
405}
406template <class ScalarType>
407inline void PtEtaPhiE4D<ScalarType>::SetM(Scalar m) {
408 GenVector_exception e("PtEtaPhiE4D::SetM() is not supposed to be called");
409 throw e;
410 PtEtaPhiM4D<Scalar> v(*this); v.SetM(m);
411 *this = PtEtaPhiE4D<Scalar>(v);
412}
413
414#endif // endif __MAKE__CINT || G__DICTIONARY
415
416} // end namespace Math
417
418} // end namespace ROOT
419
420
421
422
423#endif // ROOT_Math_GenVector_PtEtaPhiE4D
424
SVector< double, 2 > v
Definition: Dict.h:5
#define c(i)
Definition: RSha256.hxx:101
#define e(i)
Definition: RSha256.hxx:103
#define M_PI
Definition: Rotated.cxx:105
double cosh(double)
double sinh(double)
double cos(double)
double floor(double)
double atan(double)
double sin(double)
double exp(double)
Class describing a 4D cylindrical coordinate system using Pt , Phi, Eta and E (or rho,...
Definition: PtEtaPhiE4D.h:52
Scalar P2() const
squared magnitude of spatial components (momentum squared)
Definition: PtEtaPhiE4D.h:162
Scalar Et2() const
transverse energy squared
Definition: PtEtaPhiE4D.h:231
Scalar Mag2() const
Definition: PtEtaPhiE4D.h:176
void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e)
set values using cartesian coordinate system
Definition: PtEtaPhiE4D.h:379
Scalar P() const
magnitude of momentum
Definition: PtEtaPhiE4D.h:152
void SetEta(Scalar eta)
set eta value
Definition: PtEtaPhiE4D.h:260
Scalar Theta() const
polar angle
Definition: PtEtaPhiE4D.h:247
Scalar Phi() const
Definition: PtEtaPhiE4D.h:131
bool operator!=(const PtEtaPhiE4D &rhs) const
Definition: PtEtaPhiE4D.h:325
PtEtaPhiE4D(const PtEtaPhiE4D &v)
copy constructor
Definition: PtEtaPhiE4D.h:85
static Scalar pi()
Definition: PtEtaPhiE4D.h:238
PtEtaPhiE4D(const CoordSystem &c)
Generic constructor from any 4D coordinate system implementing Pt(), Eta(), Phi() and E()
Definition: PtEtaPhiE4D.h:76
Scalar Perp2() const
Definition: PtEtaPhiE4D.h:197
Scalar Et() const
transverse energy
Definition: PtEtaPhiE4D.h:224
PtEtaPhiE4D()
Default constructor gives zero 4-vector.
Definition: PtEtaPhiE4D.h:63
PtEtaPhiE4D & operator=(const PtEtaPhiE4D &v)
assignment operator
Definition: PtEtaPhiE4D.h:91
Scalar Eta() const
Definition: PtEtaPhiE4D.h:130
void SetE(Scalar e)
set E value
Definition: PtEtaPhiE4D.h:273
Scalar Perp() const
Definition: PtEtaPhiE4D.h:134
Scalar Rho() const
Definition: PtEtaPhiE4D.h:135
bool operator==(const PtEtaPhiE4D &rhs) const
Exact equality.
Definition: PtEtaPhiE4D.h:321
void SetCoordinates(const Scalar src[])
Set internal data based on an array of 4 Scalar numbers.
Definition: PtEtaPhiE4D.h:103
Scalar M2() const
vector magnitude squared (or mass squared)
Definition: PtEtaPhiE4D.h:171
void Negate()
negate the 4-vector
Definition: PtEtaPhiE4D.h:288
Scalar Mt() const
transverse mass
Definition: PtEtaPhiE4D.h:207
Scalar M() const
invariant mass
Definition: PtEtaPhiE4D.h:181
PtEtaPhiE4D(Scalar pt, Scalar eta, Scalar phi, Scalar e)
Constructor from pt, eta, phi, e values.
Definition: PtEtaPhiE4D.h:68
void GetCoordinates(Scalar dest[]) const
get internal data into an array of 4 Scalar numbers
Definition: PtEtaPhiE4D.h:109
Scalar Pt2() const
transverse spatial component squared
Definition: PtEtaPhiE4D.h:196
void SetCoordinates(Scalar pt, Scalar eta, Scalar phi, Scalar e)
Set internal data based on 4 Scalar numbers.
Definition: PtEtaPhiE4D.h:115
void Scale(Scalar a)
Scale coordinate values by a scalar quantity a.
Definition: PtEtaPhiE4D.h:297
void SetPt(Scalar pt)
set Pt value
Definition: PtEtaPhiE4D.h:254
Scalar Mt2() const
transverse mass squared
Definition: PtEtaPhiE4D.h:202
void GetCoordinates(Scalar &pt, Scalar &eta, Scalar &phi, Scalar &e) const
get internal data into 4 Scalar numbers
Definition: PtEtaPhiE4D.h:122
void SetPhi(Scalar phi)
set phi value
Definition: PtEtaPhiE4D.h:266
Scalar Mag() const
Definition: PtEtaPhiE4D.h:191
Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors...
Definition: PxPyPzE4D.h:42
TPaveText * pt
Namespace for new Math classes and functions.
void Throw(const char *)
function throwing exception, by creating internally a GenVector_exception only when needed
VecExpr< UnaryOp< Sqrt< T >, VecExpr< A, T, D >, T >, T, D > sqrt(const VecExpr< A, T, D > &rhs)
Rotation3D::Scalar Scalar
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
static constexpr double mm
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12
#define dest(otri, vertexptr)
Definition: triangle.c:1040