Logo ROOT   6.18/05
Reference Guide
PxPyPzE4D.h
Go to the documentation of this file.
1// @(#)root/mathcore:$Id: 04c6d98020d7178ed5f0884f9466bca32b031565 $
2// Authors: W. Brown, M. Fischler, L. Moneta 2005
3
4/**********************************************************************
5* *
6* Copyright (c) 2005 , LCG ROOT MathLib Team *
7* *
8* *
9**********************************************************************/
10
11// Header file for class PxPyPzE4D
12//
13// Created by: fischler at Wed Jul 20 2005
14// (starting from PxPyPzE4D by moneta)
15//
16// Last update: $Id: 04c6d98020d7178ed5f0884f9466bca32b031565 $
17//
18#ifndef ROOT_Math_GenVector_PxPyPzE4D
19#define ROOT_Math_GenVector_PxPyPzE4D 1
20
21#include "Math/GenVector/eta.h"
22
24
25
26#include <cmath>
27
28namespace ROOT {
29
30namespace Math {
31
32//__________________________________________________________________________________________
33/**
34 Class describing a 4D cartesian coordinate system (x, y, z, t coordinates)
35 or momentum-energy vectors stored as (Px, Py, Pz, E).
36 The metric used is (-,-,-,+)
37
38 @ingroup GenVector
39*/
40
41template <class ScalarType = double>
42class PxPyPzE4D {
43
44public :
45
46 typedef ScalarType Scalar;
47
48 // --------- Constructors ---------------
49
50 /**
51 Default constructor with x=y=z=t=0
52 */
53 PxPyPzE4D() : fX(0.0), fY(0.0), fZ(0.0), fT(0.0) { }
54
55
56 /**
57 Constructor from x, y , z , t values
58 */
60 fX(px), fY(py), fZ(pz), fT(e) { }
61
62
63 /**
64 construct from any vector or coordinate system class
65 implementing x(), y() and z() and t()
66 */
67 template <class CoordSystem>
68 explicit PxPyPzE4D(const CoordSystem & v) :
69 fX( v.x() ), fY( v.y() ), fZ( v.z() ), fT( v.t() ) { }
70
71 // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower
72 // so we decided to re-implement them ( there is no no need to have them with g++4)
73 /**
74 copy constructor
75 */
77 fX(v.fX), fY(v.fY), fZ(v.fZ), fT(v.fT) { }
78
79 /**
80 assignment operator
81 */
83 fX = v.fX;
84 fY = v.fY;
85 fZ = v.fZ;
86 fT = v.fT;
87 return *this;
88 }
89
90 /**
91 Set internal data based on an array of 4 Scalar numbers
92 */
93 void SetCoordinates( const Scalar src[] )
94 { fX=src[0]; fY=src[1]; fZ=src[2]; fT=src[3]; }
95
96 /**
97 get internal data into an array of 4 Scalar numbers
98 */
99 void GetCoordinates( Scalar dest[] ) const
100 { dest[0] = fX; dest[1] = fY; dest[2] = fZ; dest[3] = fT; }
101
102 /**
103 Set internal data based on 4 Scalar numbers
104 */
106 { fX=px; fY=py; fZ=pz; fT=e;}
107
108 /**
109 get internal data into 4 Scalar numbers
110 */
111 void GetCoordinates(Scalar& px, Scalar& py, Scalar& pz, Scalar& e) const
112 { px=fX; py=fY; pz=fZ; e=fT;}
113
114 // --------- Coordinates and Coordinate-like Scalar properties -------------
115
116 // cartesian (Minkowski)coordinate accessors
117
118 Scalar Px() const { return fX;}
119 Scalar Py() const { return fY;}
120 Scalar Pz() const { return fZ;}
121 Scalar E() const { return fT;}
122
123 Scalar X() const { return fX;}
124 Scalar Y() const { return fY;}
125 Scalar Z() const { return fZ;}
126 Scalar T() const { return fT;}
127
128 // other coordinate representation
129
130 /**
131 squared magnitude of spatial components
132 */
133 Scalar P2() const { return fX*fX + fY*fY + fZ*fZ; }
134
135 /**
136 magnitude of spatial components (magnitude of 3-momentum)
137 */
138 Scalar P() const { return sqrt(P2()); }
139 Scalar R() const { return P(); }
140
141 /**
142 vector magnitude squared (or mass squared)
143 */
144 Scalar M2() const { return fT*fT - fX*fX - fY*fY - fZ*fZ;}
145 Scalar Mag2() const { return M2(); }
146
147 /**
148 invariant mass
149 */
150 Scalar M() const
151 {
152 const Scalar mm = M2();
153 if (mm >= 0) {
154 return sqrt(mm);
155 } else {
156 GenVector::Throw ("PxPyPzE4D::M() - Tachyonic:\n"
157 " P^2 > E^2 so the mass would be imaginary");
158 return -sqrt(-mm);
159 }
160 }
161 Scalar Mag() const { return M(); }
162
163 /**
164 transverse spatial component squared
165 */
166 Scalar Pt2() const { return fX*fX + fY*fY;}
167 Scalar Perp2() const { return Pt2();}
168
169 /**
170 Transverse spatial component (P_perp or rho)
171 */
172 Scalar Pt() const { return sqrt(Perp2()); }
173 Scalar Perp() const { return Pt();}
174 Scalar Rho() const { return Pt();}
175
176 /**
177 transverse mass squared
178 */
179 Scalar Mt2() const { return fT*fT - fZ*fZ; }
180
181 /**
182 transverse mass
183 */
184 Scalar Mt() const {
185 const Scalar mm = Mt2();
186 if (mm >= 0) {
187 return sqrt(mm);
188 } else {
189 GenVector::Throw ("PxPyPzE4D::Mt() - Tachyonic:\n"
190 " Pz^2 > E^2 so the transverse mass would be imaginary");
191 return -sqrt(-mm);
192 }
193 }
194
195 /**
196 transverse energy squared
197 */
198 Scalar Et2() const { // is (E^2 * pt ^2) / p^2
199 // but it is faster to form p^2 from pt^2
200 Scalar pt2 = Pt2();
201 return pt2 == 0 ? 0 : fT*fT * pt2/( pt2 + fZ*fZ );
202 }
203
204 /**
205 transverse energy
206 */
207 Scalar Et() const {
208 const Scalar etet = Et2();
209 return fT < 0.0 ? -sqrt(etet) : sqrt(etet);
210 }
211
212 /**
213 azimuthal angle
214 */
215 Scalar Phi() const { return (fX == 0.0 && fY == 0.0) ? 0 : atan2(fY, fX); }
216
217 /**
218 polar angle
219 */
220 Scalar Theta() const { return (fX == 0.0 && fY == 0.0 && fZ == 0.0) ? 0 : atan2(Pt(), fZ); }
221
222 /**
223 pseudorapidity
224 */
225 Scalar Eta() const {
226 return Impl::Eta_FromRhoZ ( Pt(), fZ);
227 }
228
229 // --------- Set Coordinates of this system ---------------
230
231
232 /**
233 set X value
234 */
235 void SetPx( Scalar px) {
236 fX = px;
237 }
238 /**
239 set Y value
240 */
241 void SetPy( Scalar py) {
242 fY = py;
243 }
244 /**
245 set Z value
246 */
247 void SetPz( Scalar pz) {
248 fZ = pz;
249 }
250 /**
251 set T value
252 */
253 void SetE( Scalar e) {
254 fT = e;
255 }
256
257 /**
258 set all values using cartesian coordinates
259 */
260 void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e) {
261 fX=px;
262 fY=py;
263 fZ=pz;
264 fT=e;
265 }
266
267
268
269 // ------ Manipulations -------------
270
271 /**
272 negate the 4-vector
273 */
274 void Negate( ) { fX = -fX; fY = -fY; fZ = -fZ; fT = -fT;}
275
276 /**
277 scale coordinate values by a scalar quantity a
278 */
279 void Scale( const Scalar & a) {
280 fX *= a;
281 fY *= a;
282 fZ *= a;
283 fT *= a;
284 }
285
286 /**
287 Assignment from a generic coordinate system implementing
288 x(), y(), z() and t()
289 */
290 template <class AnyCoordSystem>
291 PxPyPzE4D & operator = (const AnyCoordSystem & v) {
292 fX = v.x();
293 fY = v.y();
294 fZ = v.z();
295 fT = v.t();
296 return *this;
297 }
298
299 /**
300 Exact equality
301 */
302 bool operator == (const PxPyPzE4D & rhs) const {
303 return fX == rhs.fX && fY == rhs.fY && fZ == rhs.fZ && fT == rhs.fT;
304 }
305 bool operator != (const PxPyPzE4D & rhs) const {return !(operator==(rhs));}
306
307
308 // ============= Compatibility section ==================
309
310 // The following make this coordinate system look enough like a CLHEP
311 // vector that an assignment member template can work with either
312 Scalar x() const { return fX; }
313 Scalar y() const { return fY; }
314 Scalar z() const { return fZ; }
315 Scalar t() const { return fT; }
316
317
318
319#if defined(__MAKECINT__) || defined(G__DICTIONARY)
320
321 // ====== Set member functions for coordinates in other systems =======
322
323 void SetPt(Scalar pt);
324
325 void SetEta(Scalar eta);
326
327 void SetPhi(Scalar phi);
328
329 void SetM(Scalar m);
330
331#endif
332
333private:
334
335 /**
336 (contigous) data containing the coordinate values x,y,z,t
337 */
338
339 ScalarType fX;
340 ScalarType fY;
341 ScalarType fZ;
342 ScalarType fT;
343
344};
345
346} // end namespace Math
347} // end namespace ROOT
348
349
350
351#if defined(__MAKECINT__) || defined(G__DICTIONARY)
352// move implementations here to avoid circle dependencies
353
356
357namespace ROOT {
358
359namespace Math {
360
361
362 // ====== Set member functions for coordinates in other systems =======
363 // throw always exceptions in this case
364
365template <class ScalarType>
366void PxPyPzE4D<ScalarType>::SetPt(Scalar pt) {
367 GenVector_exception e("PxPyPzE4D::SetPt() is not supposed to be called");
368 throw e;
369 PtEtaPhiE4D<Scalar> v(*this); v.SetPt(pt); *this = PxPyPzE4D<Scalar>(v);
370}
371template <class ScalarType>
372void PxPyPzE4D<ScalarType>::SetEta(Scalar eta) {
373 GenVector_exception e("PxPyPzE4D::SetEta() is not supposed to be called");
374 throw e;
375 PtEtaPhiE4D<Scalar> v(*this); v.SetEta(eta); *this = PxPyPzE4D<Scalar>(v);
376}
377template <class ScalarType>
378void PxPyPzE4D<ScalarType>::SetPhi(Scalar phi) {
379 GenVector_exception e("PxPyPzE4D::SetPhi() is not supposed to be called");
380 throw e;
381 PtEtaPhiE4D<Scalar> v(*this); v.SetPhi(phi); *this = PxPyPzE4D<Scalar>(v);
382}
383
384template <class ScalarType>
385void PxPyPzE4D<ScalarType>::SetM(Scalar m) {
386 GenVector_exception e("PxPyPzE4D::SetM() is not supposed to be called");
387 throw e;
388 PtEtaPhiM4D<Scalar> v(*this); v.SetM(m);
389 *this = PxPyPzE4D<Scalar>(v);
390}
391
392
393} // end namespace Math
394
395} // end namespace ROOT
396
397#endif // endif __MAKE__CINT || G__DICTIONARY
398
399
400#endif // ROOT_Math_GenVector_PxPyPzE4D
SVector< double, 2 > v
Definition: Dict.h:5
#define e(i)
Definition: RSha256.hxx:103
double atan2(double, double)
Class describing a 4D cartesian coordinate system (x, y, z, t coordinates) or momentum-energy vectors...
Definition: PxPyPzE4D.h:42
Scalar x() const
Definition: PxPyPzE4D.h:312
ScalarType Scalar
Definition: PxPyPzE4D.h:46
void GetCoordinates(Scalar dest[]) const
get internal data into an array of 4 Scalar numbers
Definition: PxPyPzE4D.h:99
Scalar Pz() const
Definition: PxPyPzE4D.h:120
void GetCoordinates(Scalar &px, Scalar &py, Scalar &pz, Scalar &e) const
get internal data into 4 Scalar numbers
Definition: PxPyPzE4D.h:111
ScalarType fX
(contigous) data containing the coordinate values x,y,z,t
Definition: PxPyPzE4D.h:339
PxPyPzE4D & operator=(const PxPyPzE4D &v)
assignment operator
Definition: PxPyPzE4D.h:82
void SetCoordinates(Scalar px, Scalar py, Scalar pz, Scalar e)
Set internal data based on 4 Scalar numbers.
Definition: PxPyPzE4D.h:105
Scalar Y() const
Definition: PxPyPzE4D.h:124
bool operator==(const PxPyPzE4D &rhs) const
Exact equality.
Definition: PxPyPzE4D.h:302
Scalar z() const
Definition: PxPyPzE4D.h:314
Scalar Perp2() const
Definition: PxPyPzE4D.h:167
Scalar E() const
Definition: PxPyPzE4D.h:121
Scalar Mt() const
transverse mass
Definition: PxPyPzE4D.h:184
Scalar Pt() const
Transverse spatial component (P_perp or rho)
Definition: PxPyPzE4D.h:172
Scalar Perp() const
Definition: PxPyPzE4D.h:173
PxPyPzE4D()
Default constructor with x=y=z=t=0.
Definition: PxPyPzE4D.h:53
Scalar Px() const
Definition: PxPyPzE4D.h:118
void SetPz(Scalar pz)
set Z value
Definition: PxPyPzE4D.h:247
bool operator!=(const PxPyPzE4D &rhs) const
Definition: PxPyPzE4D.h:305
void SetCoordinates(const Scalar src[])
Set internal data based on an array of 4 Scalar numbers.
Definition: PxPyPzE4D.h:93
void Scale(const Scalar &a)
scale coordinate values by a scalar quantity a
Definition: PxPyPzE4D.h:279
void SetPxPyPzE(Scalar px, Scalar py, Scalar pz, Scalar e)
set all values using cartesian coordinates
Definition: PxPyPzE4D.h:260
void SetPx(Scalar px)
set X value
Definition: PxPyPzE4D.h:235
Scalar Eta() const
pseudorapidity
Definition: PxPyPzE4D.h:225
Scalar Mag2() const
Definition: PxPyPzE4D.h:145
void Negate()
negate the 4-vector
Definition: PxPyPzE4D.h:274
Scalar Rho() const
Definition: PxPyPzE4D.h:174
Scalar Mt2() const
transverse mass squared
Definition: PxPyPzE4D.h:179
Scalar Z() const
Definition: PxPyPzE4D.h:125
Scalar P2() const
squared magnitude of spatial components
Definition: PxPyPzE4D.h:133
PxPyPzE4D(const PxPyPzE4D &v)
copy constructor
Definition: PxPyPzE4D.h:76
Scalar X() const
Definition: PxPyPzE4D.h:123
Scalar M() const
invariant mass
Definition: PxPyPzE4D.h:150
Scalar Et() const
transverse energy
Definition: PxPyPzE4D.h:207
Scalar Et2() const
transverse energy squared
Definition: PxPyPzE4D.h:198
Scalar Pt2() const
transverse spatial component squared
Definition: PxPyPzE4D.h:166
Scalar Phi() const
azimuthal angle
Definition: PxPyPzE4D.h:215
Scalar Theta() const
polar angle
Definition: PxPyPzE4D.h:220
Scalar Py() const
Definition: PxPyPzE4D.h:119
Scalar P() const
magnitude of spatial components (magnitude of 3-momentum)
Definition: PxPyPzE4D.h:138
Scalar R() const
Definition: PxPyPzE4D.h:139
Scalar Mag() const
Definition: PxPyPzE4D.h:161
void SetE(Scalar e)
set T value
Definition: PxPyPzE4D.h:253
PxPyPzE4D(Scalar px, Scalar py, Scalar pz, Scalar e)
Constructor from x, y , z , t values.
Definition: PxPyPzE4D.h:59
void SetPy(Scalar py)
set Y value
Definition: PxPyPzE4D.h:241
Scalar y() const
Definition: PxPyPzE4D.h:313
Scalar M2() const
vector magnitude squared (or mass squared)
Definition: PxPyPzE4D.h:144
Scalar t() const
Definition: PxPyPzE4D.h:315
PxPyPzE4D(const CoordSystem &v)
construct from any vector or coordinate system class implementing x(), y() and z() and t()
Definition: PxPyPzE4D.h:68
Scalar T() const
Definition: PxPyPzE4D.h:126
TPaveText * pt
Namespace for new Math classes and functions.
void Throw(const char *)
function throwing exception, by creating internally a GenVector_exception only when needed
Scalar Eta_FromRhoZ(Scalar rho, Scalar z)
Calculate eta given rho and zeta.
Definition: eta.h:48
VecExpr< UnaryOp< Sqrt< T >, VecExpr< A, T, D >, T >, T, D > sqrt(const VecExpr< A, T, D > &rhs)
Rotation3D::Scalar Scalar
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
static constexpr double mm
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12
#define dest(otri, vertexptr)
Definition: triangle.c:1040