42template <
typename Architecture_t,
typename Layer_t = VGeneralLayer<Architecture_t>,
43 typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
46 using Matrix_t =
typename Architecture_t::Matrix_t;
47 using Scalar_t =
typename Architecture_t::Scalar_t;
65 void UpdateWeights(
size_t layerIndex, std::vector<Matrix_t> &weights,
const std::vector<Matrix_t> &weightGradients);
68 void UpdateBiases(
size_t layerIndex, std::vector<Matrix_t> &biases,
const std::vector<Matrix_t> &biasGradients);
100template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
103 :
VOptimizer<Architecture_t, Layer_t, DeepNet_t>(learningRate, deepNet), fBeta1(beta1), fBeta2(beta2),
106 std::vector<Layer_t *> &layers = deepNet.
GetLayers();
107 const size_t layersNSlices = layers.size();
113 for (
size_t i = 0; i < layersNSlices; i++) {
114 const size_t weightsNSlices = (layers[i]->GetWeights()).size();
116 for (
size_t j = 0; j < weightsNSlices; j++) {
117 Matrix_t ¤tWeights = layers[i]->GetWeightsAt(j);
118 const size_t weightsNRows = currentWeights.GetNrows();
119 const size_t weightsNCols = currentWeights.GetNcols();
127 const size_t biasesNSlices = (layers[i]->GetBiases()).size();
129 for (
size_t j = 0; j < biasesNSlices; j++) {
130 Matrix_t ¤tBiases = layers[i]->GetBiasesAt(j);
131 const size_t biasesNRows = currentBiases.GetNrows();
132 const size_t biasesNCols = currentBiases.GetNcols();
143template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
145 const std::vector<Matrix_t> &weightGradients) ->
void
147 std::vector<Matrix_t> ¤tLayerFirstMomentWeights = this->GetFirstMomentWeightsAt(layerIndex);
148 std::vector<Matrix_t> ¤tLayerSecondMomentWeights = this->GetSecondMomentWeightsAt(layerIndex);
151 Scalar_t alpha = (this->GetLearningRate()) * (
sqrt(1 -
pow(this->GetBeta2(), this->GetGlobalStep()))) /
152 (1 -
pow(this->GetBeta1(), this->GetGlobalStep()));
155 for (
size_t i = 0; i < weights.size(); i++) {
157 Architecture_t::AdamUpdateFirstMom(currentLayerFirstMomentWeights[i], weightGradients[i], this->GetBeta1() );
159 Architecture_t::AdamUpdateSecondMom(currentLayerSecondMomentWeights[i], weightGradients[i], this->GetBeta2() );
161 Architecture_t::AdamUpdate(weights[i], currentLayerFirstMomentWeights[i], currentLayerSecondMomentWeights[i],
162 alpha, this->GetEpsilon() );
167template <
typename Architecture_t,
typename Layer_t,
typename DeepNet_t>
169 const std::vector<Matrix_t> &biasGradients) ->
void
171 std::vector<Matrix_t> ¤tLayerFirstMomentBiases = this->GetFirstMomentBiasesAt(layerIndex);
172 std::vector<Matrix_t> ¤tLayerSecondMomentBiases = this->GetSecondMomentBiasesAt(layerIndex);
175 Scalar_t alpha = (this->GetLearningRate()) * (
sqrt(1 -
pow(this->GetBeta2(), this->GetGlobalStep()))) /
176 (1 -
pow(this->GetBeta1(), this->GetGlobalStep()));
179 for (
size_t i = 0; i < biases.size(); i++) {
181 Architecture_t::AdamUpdateFirstMom(currentLayerFirstMomentBiases[i], biasGradients[i], this->GetBeta1() );
183 Architecture_t::AdamUpdateSecondMom(currentLayerSecondMomentBiases[i], biasGradients[i], this->GetBeta2() );
185 Architecture_t::AdamUpdate(biases[i], currentLayerFirstMomentBiases[i], currentLayerSecondMomentBiases[i],
186 alpha, this->GetEpsilon() );
double pow(double, double)
std::vector< std::vector< Matrix_t > > fSecondMomentWeights
The decaying average of the second moment of the past weight gradients associated with the deep net.
std::vector< Matrix_t > & GetSecondMomentBiasesAt(size_t i)
Scalar_t GetEpsilon() const
typename Architecture_t::Matrix_t Matrix_t
std::vector< Matrix_t > & GetFirstMomentBiasesAt(size_t i)
Scalar_t fBeta2
The Beta2 constant used by the optimizer.
std::vector< std::vector< Matrix_t > > fSecondMomentBiases
The decaying average of the second moment of the past bias gradients associated with the deep net.
std::vector< std::vector< Matrix_t > > & GetSecondMomentBiases()
~TAdam()=default
Destructor.
std::vector< Matrix_t > & GetFirstMomentWeightsAt(size_t i)
std::vector< std::vector< Matrix_t > > & GetSecondMomentWeights()
TAdam(DeepNet_t &deepNet, Scalar_t learningRate=0.001, Scalar_t beta1=0.9, Scalar_t beta2=0.999, Scalar_t epsilon=1e-8)
Constructor.
Scalar_t GetBeta2() const
std::vector< std::vector< Matrix_t > > fFirstMomentBiases
The decaying average of the first moment of the past bias gradients associated with the deep net.
Scalar_t fEpsilon
The Smoothing term used to avoid division by zero.
void UpdateWeights(size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients)
Update the weights, given the current weight gradients.
std::vector< std::vector< Matrix_t > > & GetFirstMomentWeights()
std::vector< Matrix_t > & GetSecondMomentWeightsAt(size_t i)
std::vector< std::vector< Matrix_t > > fFirstMomentWeights
The decaying average of the first moment of the past weight gradients associated with the deep net.
Scalar_t fBeta1
The Beta1 constant used by the optimizer.
void UpdateBiases(size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients)
Update the biases, given the current bias gradients.
std::vector< std::vector< Matrix_t > > & GetFirstMomentBiases()
typename Architecture_t::Scalar_t Scalar_t
Scalar_t GetBeta1() const
Getters.
std::vector< Layer_t * > & GetLayers()
Abstract ClassifierFactory template that handles arbitrary types.