77 return output.CountChar(
',')+1;
83 fStructure.
Last(
':') - fStructure.
First(
':') - 1));
88 num = atoi(
TString(hidden(beg, end - beg)).Data());
91 end = hidden.
Index(
":", beg + 1);
92 if(layer==
cnt)
return num;
96 if(layer==
cnt)
return num;
114 brName =
TString(input(beg, end - beg));
116 brName = brName(1,brName.
Length()-1);
118 end = input.
Index(
",", beg + 1);
119 if(
cnt==idx)
return brName;
124 brName = brName(1,brName.
Length()-1);
134 return neuron ? neuron->
GetName() :
"NO SUCH NEURON";
143 return neuron ? neuron->
GetName() :
"NO SUCH NEURON";
152 std::cout <<
"Network with structure: " << fStructure.
Data() << std::endl;
153 std::cout <<
"inputs with low values in the differences plot may not be needed" << std::endl;
155 char var[64], sel[64];
164 <<
" +/- " << tmp->
GetRMS() << std::endl;
188 Int_t i(0), j(0), k(0),
l(0);
191 pos = re.
Index(formula,&len);
192 if(pos==-1 || len<3) {
197 TString newformula(formula,pos);
198 TString val = formula(pos+1,len-2);
200 formula = newformula;
201 index[i] = val.
Atoi();
203 TH1D tmp(
"tmpb",
"tmpb", 1, -FLT_MAX, FLT_MAX);
223 leaflist+=
Form(
"In%d/D:",i);
228 for (i=0; i<numOutNodes; i++)
229 leaflist+=
Form(
"Out%d/D:",i);
234 for (i=0; i<numOutNodes; i++)
235 leaflist+=
Form(
"True%d/D:",i);
241 for(j=0; j< nEvents; j++) {
259 params[i] += shift*rms[i];
261 params[i] -= 2*shift*rms[i];
263 diff += (v1-v2)*(v1-v2);
265 params[i] += shift*rms[i];
276 for(i=0; i<
GetNeurons(1); i++)
delete formulas[i];
290 snprintf(sel,64,
"inNeuron==%d", i);
316 THStack* stack =
new THStack(
"differences",
"differences (impact of variables on ANN)");
319 char var[64], sel[64];
322 snprintf(sel,64,
"inNeuron==%d", i);
330 stack->
Draw(
"nostack");
346 THStack* stack =
new THStack(
"__NNout_TMLPA",
Form(
"Neural net output (neuron %d)",neuron));
347 TH1F *bgh =
new TH1F(
"__bgh_TMLPA",
"NN output", 50, -0.5, 1.5);
348 TH1F *sigh =
new TH1F(
"__sigh_TMLPA",
"NN output", 50, -0.5, 1.5);
357 data->Draw(
">>__tmpBkg_MLPA",bg,
"goff");
360 nEvents = bg_list->
GetN();
361 for(j=0; j< nEvents; j++) {
365 nEvents = signal_list->
GetN();
366 for(j=0; j< nEvents; j++) {
381 legend->
AddEntry(bgh,
"Background");
383 stack->
Draw(
"nostack");
386 data->SetEventList(current);
407 drawline.
Form(
"Out.Out%d-True.True%d:True.True%d>>",
408 outnode, outnode, outnode);
409 fIOTree->
Draw(drawline+pipehist+
"(20)",
"",
"goff prof");
414 h->SetTitle(
Form(
"#Delta(output - truth) vs. truth for %s",
416 h->GetXaxis()->SetTitle(title);
417 h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s", title));
419 if (!strstr(option,
"goff"))
437 "Deviation of MLP output from truth");
441 if (!option || !strstr(option,
"goff"))
442 leg=
new TLegend(.4,.85,.95,.95,
"#Delta(output - truth) vs. truth for:");
444 const char* xAxisTitle=0;
450 h->SetLineColor(1+outnode);
455 xAxisTitle=
h->GetXaxis()->GetTitle();
482 TString pipehist=
Form(
"MLP_truthdev_i%d_o%d", innode, outnode);
484 drawline.
Form(
"Out.Out%d-True.True%d:In.In%d>>",
485 outnode, outnode, innode);
486 fIOTree->
Draw(drawline+pipehist+
"(50)",
"",
"goff prof");
491 h->SetTitle(
Form(
"#Delta(output - truth) of %s vs. input %s",
492 titleOutNeuron, titleInNeuron));
493 h->GetXaxis()->SetTitle(
Form(
"%s", titleInNeuron));
494 h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s",
496 if (!strstr(option,
"goff"))
513 sName.
Form(
"MLP_TruthDeviationIO_%d", outnode);
516 Form(
"Deviation of MLP output %s from truth",
521 if (!option || !strstr(option,
"goff"))
523 Form(
"#Delta(output - truth) of %s vs. input for:",
530 for (innode=0; innode<numInNodes; innode++) {
532 h->SetLineColor(1+innode);
534 if (
leg)
leg->AddEntry(
h,
h->GetXaxis()->GetTitle());
char * Form(const char *fmt,...)
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
A TEventList object is a list of selected events (entries) in a TTree.
virtual Long64_t GetEntry(Int_t index) const
Return value of entry at index in the list.
virtual Int_t GetN() const
1-D histogram with a double per channel (see TH1 documentation)}
1-D histogram with a float per channel (see TH1 documentation)}
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Double_t GetRMS(Int_t axis=1) const
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
The Histogram stack class.
virtual void Draw(Option_t *chopt="")
Draw this multihist with its current attributes.
TAxis * GetYaxis() const
Get x axis of the histogram used to draw the stack.
virtual void Add(TH1 *h, Option_t *option="")
add a new histogram to the list Only 1-d and 2-d histograms currently supported.
TAxis * GetXaxis() const
Get x axis of the histogram used to draw the stack.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
Int_t GetNeurons(Int_t layer)
Returns the number of neurons in given layer.
Int_t GetLayers()
Returns the number of layers.
TProfile * DrawTruthDeviation(Int_t outnode=0, Option_t *option="")
Create a profile of the difference of the MLP output minus the true value for a given output node out...
void DrawDInput(Int_t i)
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
const char * GetOutputNeuronTitle(Int_t out)
Returns the name of any neuron from the output layer.
void DrawDInputs()
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
THStack * DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
void CheckNetwork()
Gives some information about the network in the terminal.
void GatherInformations()
Collect information about what is usefull in the network.
THStack * DrawTruthDeviations(Option_t *option="")
Creates TProfiles of the difference of the MLP output minus the true value vs the true value,...
TProfile * DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
const char * GetInputNeuronTitle(Int_t in)
Returns the name of any neuron from the input layer.
TMultiLayerPerceptron * fNetwork
virtual ~TMLPAnalyzer()
Destructor.
TString GetNeuronFormula(Int_t idx)
Returns the formula used as input for neuron (idx) in the first layer.
void DrawNetwork(Int_t neuron, const char *signal, const char *bg)
Draws the distribution of the neural network (using ith neuron).
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
EventList defining the events in the training dataset.
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
TString GetStructure() const
void GetEntry(Int_t) const
Load an entry into the network.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual const char * GetName() const
Returns name of object.
Regular expression class.
Ssiz_t Index(const TString &str, Ssiz_t *len, Ssiz_t start=0) const
Find the first occurrence of the regexp in string and return the position, or -1 if there is no match...
Int_t Atoi() const
Return integer value of string.
Ssiz_t First(char c) const
Find first occurrence of a character c.
const char * Data() const
Ssiz_t Last(char c) const
Find last occurrence of a character c.
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
TString & Remove(Ssiz_t pos)
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
A TTree object has a header with a name and a title.
virtual Int_t Fill()
Fill all branches.
virtual void SetDirectory(TDirectory *dir)
Change the tree's directory.
virtual void Draw(Option_t *opt)
Default Draw method for all objects.
virtual void ResetBranchAddresses()
Tell all of our branches to drop their current objects and allocate new ones.
virtual Int_t Branch(TCollection *list, Int_t bufsize=32000, Int_t splitlevel=99, const char *name="")
Create one branch for each element in the collection.
Double_t Sqrt(Double_t x)