Logo ROOT   6.16/01
Reference Guide
TLorentzVector.cxx
Go to the documentation of this file.
1// @(#)root/physics:$Id$
2// Author: Pasha Murat , Peter Malzacher 12/02/99
3// Oct 8 1999: changed Warning to Error and
4// return fX in Double_t & operator()
5// Oct 20 1999: dito in Double_t operator()
6// Jan 25 2000: implemented as (fP,fE) instead of (fX,fY,fZ,fE)
7
8
9/** \class TLorentzVector
10 \ingroup Physics
11TLorentzVector is a general four-vector class, which can be used
12either for the description of position and time (x,y,z,t) or momentum and
13energy (px,py,pz,E).
14
15### Declaration
16TLorentzVector has been implemented as a set a TVector3 and a Double_t variable.
17By default all components are initialized by zero.
18
19~~~ {.cpp}
20 TLorentzVector v1; // initialized by (0., 0., 0., 0.)
21 TLorentzVector v2(1., 1., 1., 1.);
22 TLorentzVector v3(v1);
23 TLorentzVector v4(TVector3(1., 2., 3.),4.);
24~~~
25
26For backward compatibility there are two constructors from an Double_t
27and Float_t C array.
28
29
30### Access to the components
31There are two sets of access functions to the components of a LorentzVector:
32X(), Y(), Z(), T() and Px(),
33Py(), Pz() and E(). Both sets return the same values
34but the first set is more relevant for use where TLorentzVector
35describes a combination of position and time and the second set is more
36relevant where TLorentzVector describes momentum and energy:
37
38~~~ {.cpp}
39 Double_t xx =v.X();
40 ...
41 Double_t tt = v.T();
42
43 Double_t px = v.Px();
44 ...
45 Double_t ee = v.E();
46~~~
47
48The components of TLorentzVector can also accessed by index:
49
50~~~ {.cpp}
51 xx = v(0); or xx = v[0];
52 yy = v(1); yy = v[1];
53 zz = v(2); zz = v[2];
54 tt = v(3); tt = v[3];
55~~~
56
57You can use the Vect() member function to get the vector component
58of TLorentzVector:
59
60~~~ {.cpp}
61 TVector3 p = v.Vect();
62~~~
63
64For setting components also two sets of member functions can be used:
65
66~~~ {.cpp}
67 v.SetX(1.); or v.SetPx(1.);
68 ... ...
69 v.SetT(1.); v.SetE(1.);
70~~~
71
72To set more the one component by one call you can use the SetVect()
73function for the TVector3 part or SetXYZT(), SetPxPyPzE(). For convenience there is
74
75also a SetXYZM():
76
77~~~ {.cpp}
78 v.SetVect(TVector3(1,2,3));
79 v.SetXYZT(x,y,z,t);
80 v.SetPxPyPzE(px,py,pz,e);
81 v.SetXYZM(x,y,z,m); // -> v=(x,y,z,e=Sqrt(x*x+y*y+z*z+m*m))
82~~~
83
84### Vector components in non-cartesian coordinate systems
85There are a couple of member functions to get and set the TVector3
86part of the parameters in
87spherical coordinate systems:
88
89~~~ {.cpp}
90 Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;
91 m = v.Rho();
92 t = v.Theta();
93 cost = v.CosTheta();
94 phi = v.Phi();
95
96 v.SetRho(10.);
97 v.SetTheta(TMath::Pi()*.3);
98 v.SetPhi(TMath::Pi());
99~~~
100
101or get information about the r-coordinate in cylindrical systems:
102
103~~~ {.cpp}
104 Double_t pp, pp2, ppv2, pp2v2;
105 pp = v.Perp(); // get transvers component
106 pp2 = v.Perp2(); // get transverse component squared
107 ppv2 = v.Perp(v1); // get transvers component with
108 // respect to another vector
109 pp2v2 = v.Perp(v1);
110~~~
111
112for convenience there are two more set functions SetPtEtaPhiE(pt,eta,phi,e);
113and SetPtEtaPhiM(pt,eta,phi,m);
114
115### Arithmetic and comparison operators
116The TLorentzVector class provides operators to add, subtract or
117compare four-vectors:
118
119~~~ {.cpp}
120 v3 = -v1;
121 v1 = v2+v3;
122 v1+= v3;
123 v1 = v2 + v3;
124 v1-= v3;
125
126 if (v1 == v2) {...}
127 if(v1 != v3) {...}
128~~~
129
130### Magnitude/Invariant mass, beta, gamma, scalar product
131The scalar product of two four-vectors is calculated with the (-,-,-,+)
132metric,
133
134 i.e. `s = v1*v2 = t1*t2-x1*x2-y1*y2-z1*z2`
135The magnitude squared mag2 of a four-vector is therefore:
136
137~~~ {.cpp}
138 mag2 = v*v = t*t-x*x-y*y-z*z
139~~~
140It mag2 is negative mag = -Sqrt(-mag*mag). The member
141functions are:
142
143~~~ {.cpp}
144 Double_t s, s2;
145 s = v1.Dot(v2); // scalar product
146 s = v1*v2; // scalar product
147 s2 = v.Mag2(); or s2 = v.M2();
148 s = v.Mag(); s = v.M();
149~~~
150
151Since in case of momentum and energy the magnitude has the meaning of
152invariant mass TLorentzVector provides the more meaningful aliases
153M2() and M();
154The member functions Beta() and Gamma() returns
155beta and gamma = 1/Sqrt(1-beta*beta).
156### Lorentz boost
157A boost in a general direction can be parameterised with three parameters
158which can be taken as the components of a three vector b = (bx,by,bz).
159With x = (x,y,z) and gamma = 1/Sqrt(1-beta*beta) (beta being the module of vector b),
160an arbitrary active Lorentz boost transformation (from the rod frame
161to the original frame) can be written as:
162
163~~~ {.cpp}
164 x = x' + (gamma-1)/(beta*beta) * (b*x') * b + gamma * t' * b
165 t = gamma (t'+ b*x').
166~~~
167
168The member function Boost() performs a boost transformation
169from the rod frame to the original frame. BoostVector() returns
170a TVector3 of the spatial components divided by the time component:
171
172~~~ {.cpp}
173 TVector3 b;
174 v.Boost(bx,by,bz);
175 v.Boost(b);
176 b = v.BoostVector(); // b=(x/t,y/t,z/t)
177~~~
178
179### Rotations
180There are four sets of functions to rotate the TVector3 component
181of a TLorentzVector:
182
183#### rotation around axes
184
185~~~ {.cpp}
186 v.RotateX(TMath::Pi()/2.);
187 v.RotateY(.5);
188 v.RotateZ(.99);
189~~~
190
191#### rotation around an arbitrary axis
192 v.Rotate(TMath::Pi()/4., v1); // rotation around v1
193
194#### transformation from rotated frame
195
196~~~ {.cpp}
197 v.RotateUz(direction); // direction must be a unit TVector3
198~~~
199
200#### by TRotation (see TRotation)
201
202~~~ {.cpp}
203 TRotation r;
204 v.Transform(r); or v *= r; // Attention v=M*v
205~~~
206
207### Misc
208
209#### Angle between two vectors
210
211~~~ {.cpp}
212 Double_t a = v1.Angle(v2.Vect()); // get angle between v1 and v2
213~~~
214
215#### Light-cone components
216Member functions Plus() and Minus() return the positive
217and negative light-cone components:
218
219~~~ {.cpp}
220 Double_t pcone = v.Plus();
221 Double_t mcone = v.Minus();
222~~~
223
224CAVEAT: The values returned are T{+,-}Z. It is known that some authors
225find it easier to define these components as (T{+,-}Z)/sqrt(2). Thus
226check what definition is used in the physics you're working in and adapt
227your code accordingly.
228
229#### Transformation by TLorentzRotation
230A general Lorentz transformation see class TLorentzRotation can
231be used by the Transform() member function, the *= or
232* operator of the TLorentzRotation class:
233
234~~~ {.cpp}
235 TLorentzRotation l;
236 v.Transform(l);
237 v = l*v; or v *= l; // Attention v = l*v
238~~~
239*/
240
241#include "TLorentzVector.h"
242
243#include "TBuffer.h"
244#include "TString.h"
245#include "TLorentzRotation.h"
246
248
249
251{
252 //Boost this Lorentz vector
253 Double_t b2 = bx*bx + by*by + bz*bz;
254 Double_t gamma = 1.0 / TMath::Sqrt(1.0 - b2);
255 Double_t bp = bx*X() + by*Y() + bz*Z();
256 Double_t gamma2 = b2 > 0 ? (gamma - 1.0)/b2 : 0.0;
257
258 SetX(X() + gamma2*bp*bx + gamma*bx*T());
259 SetY(Y() + gamma2*bp*by + gamma*by*T());
260 SetZ(Z() + gamma2*bp*bz + gamma*bz*T());
261 SetT(gamma*(T() + bp));
262}
263
265{
266 //return rapidity
267 return 0.5*log( (E()+Pz()) / (E()-Pz()) );
268}
269
271{
272 //multiply this Lorentzvector by m
273 return *this = m.VectorMultiplication(*this);
274}
275
277{
278 //Transform this Lorentzvector
279 return *this = m.VectorMultiplication(*this);
280}
281
282void TLorentzVector::Streamer(TBuffer &R__b)
283{
284 // Stream an object of class TLorentzVector.
285 Double_t x, y, z;
286 UInt_t R__s, R__c;
287 if (R__b.IsReading()) {
288 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
289 if (R__v > 3) {
290 R__b.ReadClassBuffer(TLorentzVector::Class(), this, R__v, R__s, R__c);
291 return;
292 }
293 //====process old versions before automatic schema evolution
294 if (R__v != 2) TObject::Streamer(R__b);
295 R__b >> x;
296 R__b >> y;
297 R__b >> z;
298 fP.SetXYZ(x,y,z);
299 R__b >> fE;
300 R__b.CheckByteCount(R__s, R__c, TLorentzVector::IsA());
301 } else {
303 }
304}
305
306
307////////////////////////////////////////////////////////////////////////////////
308/// Print the TLorentz vector components as (x,y,z,t) and (P,eta,phi,E) representations
309
311{
312 Printf("(x,y,z,t)=(%f,%f,%f,%f) (P,eta,phi,E)=(%f,%f,%f,%f)",
313 fP.x(),fP.y(),fP.z(),fE,
314 P(),Eta(),Phi(),fE);
315}
void Class()
Definition: Class.C:29
short Version_t
Definition: RtypesCore.h:61
unsigned int UInt_t
Definition: RtypesCore.h:42
double Double_t
Definition: RtypesCore.h:55
const char Option_t
Definition: RtypesCore.h:62
#define ClassImp(name)
Definition: Rtypes.h:363
#define Printf
Definition: TGeoToOCC.h:18
double log(double)
Buffer base class used for serializing objects.
Definition: TBuffer.h:40
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
virtual Version_t ReadVersion(UInt_t *start=0, UInt_t *bcnt=0, const TClass *cl=0)=0
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss)=0
Bool_t IsReading() const
Definition: TBuffer.h:83
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
The TLorentzRotation class describes Lorentz transformations including Lorentz boosts and rotations (...
TLorentzVector is a general four-vector class, which can be used either for the description of positi...
Double_t Rapidity() const
TLorentzVector & operator*=(Double_t a)
void SetY(Double_t a)
Double_t Y() const
void SetT(Double_t a)
Double_t Pz() const
Double_t X() const
void Boost(Double_t, Double_t, Double_t)
Double_t Eta() const
Double_t P() const
TLorentzVector & Transform(const TRotation &)
virtual void Print(Option_t *option="") const
Print the TLorentz vector components as (x,y,z,t) and (P,eta,phi,E) representations.
Double_t Phi() const
void SetZ(Double_t a)
Double_t E() const
Double_t Z() const
Double_t T() const
void SetX(Double_t a)
void SetXYZ(Double_t x, Double_t y, Double_t z)
Definition: TVector3.h:227
Double_t z() const
Definition: TVector3.h:215
Double_t x() const
Definition: TVector3.h:213
Double_t y() const
Definition: TVector3.h:214
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
double gamma(double x)
Double_t Sqrt(Double_t x)
Definition: TMath.h:679
auto * m
Definition: textangle.C:8