Logo ROOT   6.16/01
Reference Guide
TLorentzRotation.h
Go to the documentation of this file.
1// @(#)root/physics:$Id$
2// Author: Peter Malzacher 19/06/99
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#ifndef ROOT_TLorentzRotation
13#define ROOT_TLorentzRotation
14
15
16#include "TRotation.h"
17#include "TLorentzVector.h"
18
19
20class TLorentzRotation : public TObject {
21
22
23public:
24
26public:
27 inline TLorentzRotationRow(const TLorentzRotation &, int);
28 inline Double_t operator [] (int) const;
29private:
31 int fII;
32};
33 // Helper class for implemention of C-style subscripting r[i][j]
34
36 // Default constructor. Gives a unit matrix.
37
39 // Constructor for 3d rotations.
40
42 // Copy constructor.
43
46 // Constructors giving a Lorenz-boost.
47
48 inline Double_t XX() const;
49 inline Double_t XY() const;
50 inline Double_t XZ() const;
51 inline Double_t XT() const;
52 inline Double_t YX() const;
53 inline Double_t YY() const;
54 inline Double_t YZ() const;
55 inline Double_t YT() const;
56 inline Double_t ZX() const;
57 inline Double_t ZY() const;
58 inline Double_t ZZ() const;
59 inline Double_t ZT() const;
60 inline Double_t TX() const;
61 inline Double_t TY() const;
62 inline Double_t TZ() const;
63 inline Double_t TT() const;
64 // Elements of the matrix.
65
66 inline TLorentzRotationRow operator [] (int) const;
67 // Returns object of the helper class for C-style subscripting r[i][j]
68
69
70 Double_t operator () (int, int) const;
71 // Fortran-style subscriptimg: returns (i,j) element of the matrix.
72
73
75 inline TLorentzRotation & operator = (const TRotation &);
76 // Assignment.
77
78 inline Bool_t operator == (const TLorentzRotation &) const;
79 inline Bool_t operator != (const TLorentzRotation &) const;
80 // Comparisons.
81
82 inline Bool_t IsIdentity() const;
83 // Returns true if the Identity matrix.
84
86 inline TLorentzVector operator * (const TLorentzVector &) const;
87 // Multiplication with a Lorentz vector.
88
90 inline TLorentzRotation operator * (const TLorentzRotation &) const;
93 inline TLorentzRotation & Transform(const TRotation &);
94 // Matrix multiplication.
95 // Note: a *= b; <=> a = a * b; while a.Transform(b); <=> a = b * a;
96
97 inline TLorentzRotation Inverse() const;
98 // Return the inverse.
99
100 inline TLorentzRotation & Invert();
101 // Inverts the LorentzRotation matrix.
102
104 inline TLorentzRotation & Boost(const TVector3 &);
105 // Lorenz boost.
106
108 // Rotation around x-axis.
109
111 // Rotation around y-axis.
112
114 // Rotation around z-axis.
115
116 inline TLorentzRotation & Rotate(Double_t, const TVector3 &);
117 inline TLorentzRotation & Rotate(Double_t, const TVector3 *);
118 // Rotation around specified vector.
119
120protected:
121
126 // The matrix elements.
127
129 // Set elements according to a boost vector.
130
135 // Protected constructor.
136
137 ClassDef(TLorentzRotation,1) // Lorentz transformations including boosts and rotations
138
139};
140
141
142
143inline Double_t TLorentzRotation::XX() const { return fxx; }
144inline Double_t TLorentzRotation::XY() const { return fxy; }
145inline Double_t TLorentzRotation::XZ() const { return fxz; }
146inline Double_t TLorentzRotation::XT() const { return fxt; }
147inline Double_t TLorentzRotation::YX() const { return fyx; }
148inline Double_t TLorentzRotation::YY() const { return fyy; }
149inline Double_t TLorentzRotation::YZ() const { return fyz; }
150inline Double_t TLorentzRotation::YT() const { return fyt; }
151inline Double_t TLorentzRotation::ZX() const { return fzx; }
152inline Double_t TLorentzRotation::ZY() const { return fzy; }
153inline Double_t TLorentzRotation::ZZ() const { return fzz; }
154inline Double_t TLorentzRotation::ZT() const { return fzt; }
155inline Double_t TLorentzRotation::TX() const { return ftx; }
156inline Double_t TLorentzRotation::TY() const { return fty; }
157inline Double_t TLorentzRotation::TZ() const { return ftz; }
158inline Double_t TLorentzRotation::TT() const { return ftt; }
159
161(const TLorentzRotation & r, int i) : fRR(&r), fII(i) {}
162
164 return fRR->operator()(fII,jj);
165}
166
168 return TLorentzRotationRow(*this, i);
169}
170
172 fxx = r.fxx; fxy = r.fxy; fxz = r.fxz; fxt = r.fxt;
173 fyx = r.fyx; fyy = r.fyy; fyz = r.fyz; fyt = r.fyt;
174 fzx = r.fzx; fzy = r.fzy; fzz = r.fzz; fzt = r.fzt;
175 ftx = r.ftx; fty = r.fty; ftz = r.ftz; ftt = r.ftt;
176 return *this;
177}
178
179//inline TLorentzRotation &
180//TLorentzRotation::operator = (const TRotation & r) {
181// mxx = r.xx(); mxy = r.xy(); mxz = r.xz(); mxt = 0.0;
182// myx = r.yx(); myy = r.yy(); myz = r.yz(); myt = 0.0;
183// mzx = r.zx(); mzy = r.zy(); mzz = r.zz(); mzt = 0.0;
184// mtx = 0.0; mty = 0.0; mtz = 0.0; mtt = 1.0;
185// return *this;
186//}
187
189 fxx = r.XX(); fxy = r.XY(); fxz = r.XZ(); fxt = 0.0;
190 fyx = r.YX(); fyy = r.YY(); fyz = r.YZ(); fyt = 0.0;
191 fzx = r.ZX(); fzy = r.ZY(); fzz = r.ZZ(); fzt = 0.0;
192 ftx = 0.0; fty = 0.0; ftz = 0.0; ftt = 1.0;
193 return *this;
194}
195
196
197//inline Bool_t
198//TLorentzRotation::operator == (const TLorentzRotation & r) const {
199// return (mxx == r.xx() && mxy == r.xy() && mxz == r.xz() && mxt == r.xt() &&
200// myx == r.yx() && myy == r.yy() && myz == r.yz() && myt == r.yt() &&
201// mzx == r.zx() && mzy == r.zy() && mzz == r.zz() && mzt == r.zt() &&
202// mtx == r.tx() && mty == r.ty() && mtz == r.tz() && mtt == r.tt())
203// ? kTRUE : kFALSE;
204//}
205
207 return (fxx == r.fxx && fxy == r.fxy && fxz == r.fxz && fxt == r.fxt &&
208 fyx == r.fyx && fyy == r.fyy && fyz == r.fyz && fyt == r.fyt &&
209 fzx == r.fzx && fzy == r.fzy && fzz == r.fzz && fzt == r.fzt &&
210 ftx == r.ftx && fty == r.fty && ftz == r.ftz && ftt == r.ftt)
211 ? kTRUE : kFALSE;
212}
213
214//inline Bool_t
215//TLorentzRotation::operator != (const TLorentzRotation & r) const {
216// return (mxx != r.xx() || mxy != r.xy() || mxz != r.xz() || mxt != r.xt() ||
217// myx != r.yx() || myy != r.yy() || myz != r.yz() || myt != r.yt() ||
218// mzx != r.zx() || mzy != r.zy() || mzz != r.zz() || mzt != r.zt() ||
219// mtx != r.tx() || mty != r.ty() || mtz != r.tz() || mtt != r.tt())
220// ? kTRUE : kFALSE;
221//}
222
224 return (fxx != r.fxx || fxy != r.fxy || fxz != r.fxz || fxt != r.fxt ||
225 fyx != r.fyx || fyy != r.fyy || fyz != r.fyz || fyt != r.fyt ||
226 fzx != r.fzx || fzy != r.fzy || fzz != r.fzz || fzt != r.fzt ||
227 ftx != r.ftx || fty != r.fty || ftz != r.ftz || ftt != r.ftt)
228 ? kTRUE : kFALSE;
229}
230
232 return (fxx == 1.0 && fxy == 0.0 && fxz == 0.0 && fxt == 0.0 &&
233 fyx == 0.0 && fyy == 1.0 && fyz == 0.0 && fyt == 0.0 &&
234 fzx == 0.0 && fzy == 0.0 && fzz == 1.0 && fzt == 0.0 &&
235 ftx == 0.0 && fty == 0.0 && ftz == 0.0 && ftt == 1.0)
236 ? kTRUE : kFALSE;
237}
238
239
241 return TLorentzVector(fxx*p.X()+fxy*p.Y()+fxz*p.Z()+fxt*p.T(),
242 fyx*p.X()+fyy*p.Y()+fyz*p.Z()+fyt*p.T(),
243 fzx*p.X()+fzy*p.Y()+fzz*p.Z()+fzt*p.T(),
244 ftx*p.X()+fty*p.Y()+ftz*p.Z()+ftt*p.T());
245}
246
248 return VectorMultiplication(p);
249}
250
252 return MatrixMultiplication(m);
253}
254
256 return *this = MatrixMultiplication(m);
257}
258
260 return *this = m.MatrixMultiplication(*this);
261}
262
265}
266
268 return TLorentzRotation( fxx, fyx, fzx, -ftx,
269 fxy, fyy, fzy, -fty,
270 fxz, fyz, fzz, -ftz,
271 -fxt, -fyt, -fzt, ftt);
272}
273
275 return *this = Inverse();
276}
277
279 return Transform(TLorentzRotation(bx, by, bz));
280}
281
284}
285
287 return Transform(TRotation().RotateX(angle));
288}
289
291 return Transform(TRotation().RotateY(angle));
292}
293
295 return Transform(TRotation().RotateZ(angle));
296}
297
299 return Transform(TRotation().Rotate(angle, axis));
300}
301
303 return Transform(TRotation().Rotate(angle, axis));
304}
305
306#endif
ROOT::R::TRInterface & r
Definition: Object.C:4
#define b(i)
Definition: RSha256.hxx:100
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
const Bool_t kTRUE
Definition: RtypesCore.h:87
#define ClassDef(name, id)
Definition: Rtypes.h:324
TLorentzRotationRow(const TLorentzRotation &, int)
The TLorentzRotation class describes Lorentz transformations including Lorentz boosts and rotations (...
TLorentzVector VectorMultiplication(const TLorentzVector &) const
TLorentzRotation & operator*=(const TLorentzRotation &)
Double_t YX() const
Double_t ZZ() const
Bool_t operator==(const TLorentzRotation &) const
Double_t ZX() const
TLorentzRotation & Invert()
TLorentzRotation MatrixMultiplication(const TLorentzRotation &) const
Bool_t IsIdentity() const
Double_t TT() const
Double_t ZY() const
Bool_t operator!=(const TLorentzRotation &) const
Double_t ZT() const
Double_t operator()(int, int) const
Double_t YZ() const
Double_t XY() const
Double_t TY() const
TLorentzRotation & operator=(const TLorentzRotation &)
TLorentzRotation & RotateX(Double_t)
TLorentzRotation & Rotate(Double_t, const TVector3 &)
TLorentzRotation & RotateZ(Double_t)
Double_t XT() const
Double_t TZ() const
TLorentzRotation Inverse() const
TLorentzRotation & Boost(Double_t, Double_t, Double_t)
TLorentzVector operator*(const TLorentzVector &) const
Double_t TX() const
Double_t XZ() const
TLorentzRotation & RotateY(Double_t)
TLorentzRotationRow operator[](int) const
Double_t XX() const
Double_t YT() const
void SetBoost(Double_t, Double_t, Double_t)
TLorentzRotation & Transform(const TLorentzRotation &)
Double_t YY() const
TLorentzVector is a general four-vector class, which can be used either for the description of positi...
Double_t Y() const
Double_t X() const
Double_t Z() const
Double_t T() const
Mother of all ROOT objects.
Definition: TObject.h:37
The TRotation class describes a rotation of objects of the TVector3 class.
Definition: TRotation.h:20
TVector3 is a general three vector class, which can be used for the description of different vectors ...
Definition: TVector3.h:22
auto * m
Definition: textangle.C:8