108 fVRangeMode(kAdaptive),
109 fKernelEstimator(
kBox),
122 fInitializedVolumeEle(0),
137 const TString& theWeightFile) :
140 fVRangeMode(kAdaptive),
141 fKernelEstimator(
kBox),
154 fInitializedVolumeEle(0),
186 fVRangeMode = kAdaptive;
187 fKernelEstimator =
kBox;
192 fMaxVIterations = 150;
193 fInitialScale = 0.99;
197 fkNNMin =
Int_t(fNEventsMin);
198 fkNNMax =
Int_t(fNEventsMax);
200 fInitializedVolumeEle =
kFALSE;
204 SetSignalReferenceCut( 0.0 );
212 if (fDelta)
delete fDelta;
213 if (fShift)
delete fShift;
215 if (NULL != fBinaryTree)
delete fBinaryTree;
256 DeclareOptionRef(fVolumeRange=
"Adaptive",
"VolumeRangeMode",
"Method to determine volume size");
257 AddPreDefVal(
TString(
"Unscaled"));
258 AddPreDefVal(
TString(
"MinMax"));
260 AddPreDefVal(
TString(
"Adaptive"));
263 DeclareOptionRef(fKernelString=
"Box",
"KernelEstimator",
"Kernel estimation function");
265 AddPreDefVal(
TString(
"Sphere"));
266 AddPreDefVal(
TString(
"Teepee"));
267 AddPreDefVal(
TString(
"Gauss"));
268 AddPreDefVal(
TString(
"Sinc3"));
269 AddPreDefVal(
TString(
"Sinc5"));
270 AddPreDefVal(
TString(
"Sinc7"));
271 AddPreDefVal(
TString(
"Sinc9"));
272 AddPreDefVal(
TString(
"Sinc11"));
273 AddPreDefVal(
TString(
"Lanczos2"));
274 AddPreDefVal(
TString(
"Lanczos3"));
275 AddPreDefVal(
TString(
"Lanczos5"));
276 AddPreDefVal(
TString(
"Lanczos8"));
279 DeclareOptionRef(fDeltaFrac ,
"DeltaFrac",
"nEventsMin/Max for minmax and rms volume range");
280 DeclareOptionRef(fNEventsMin ,
"NEventsMin",
"nEventsMin for adaptive volume range");
281 DeclareOptionRef(fNEventsMax ,
"NEventsMax",
"nEventsMax for adaptive volume range");
282 DeclareOptionRef(fMaxVIterations,
"MaxVIterations",
"MaxVIterations for adaptive volume range");
283 DeclareOptionRef(fInitialScale ,
"InitialScale",
"InitialScale for adaptive volume range");
284 DeclareOptionRef(fGaussSigma ,
"GaussSigma",
"Width (wrt volume size) of Gaussian kernel estimator");
285 DeclareOptionRef(fNormTree ,
"NormTree",
"Normalize binary search tree");
293 if (IgnoreEventsWithNegWeightsInTraining()) {
294 Log() << kFATAL <<
"Mechanism to ignore events with negative weights in training not yet available for method: "
295 << GetMethodTypeName()
296 <<
" --> please remove \"IgnoreNegWeightsInTraining\" option from booking string."
300 fGaussSigmaNorm = fGaussSigma;
304 if (fVolumeRange ==
"MinMax" ) fVRangeMode = kMinMax;
305 else if (fVolumeRange ==
"RMS" ) fVRangeMode = kRMS;
306 else if (fVolumeRange ==
"Adaptive" ) fVRangeMode = kAdaptive;
307 else if (fVolumeRange ==
"Unscaled" ) fVRangeMode = kUnscaled;
308 else if (fVolumeRange ==
"kNN" ) fVRangeMode = kkNN;
310 Log() << kFATAL <<
"VolumeRangeMode parameter '" << fVolumeRange <<
"' unknown" <<
Endl;
313 if (fKernelString ==
"Box" ) fKernelEstimator =
kBox;
314 else if (fKernelString ==
"Sphere" ) fKernelEstimator =
kSphere;
315 else if (fKernelString ==
"Teepee" ) fKernelEstimator = kTeepee;
316 else if (fKernelString ==
"Gauss" ) fKernelEstimator =
kGauss;
317 else if (fKernelString ==
"Sinc3" ) fKernelEstimator = kSinc3;
318 else if (fKernelString ==
"Sinc5" ) fKernelEstimator = kSinc5;
319 else if (fKernelString ==
"Sinc7" ) fKernelEstimator = kSinc7;
320 else if (fKernelString ==
"Sinc9" ) fKernelEstimator = kSinc9;
321 else if (fKernelString ==
"Sinc11" ) fKernelEstimator = kSinc11;
322 else if (fKernelString ==
"Lanczos2" ) fKernelEstimator = kLanczos2;
323 else if (fKernelString ==
"Lanczos3" ) fKernelEstimator = kLanczos3;
324 else if (fKernelString ==
"Lanczos5" ) fKernelEstimator = kLanczos5;
325 else if (fKernelString ==
"Lanczos8" ) fKernelEstimator = kLanczos8;
326 else if (fKernelString ==
"Trim" ) fKernelEstimator = kTrim;
328 Log() << kFATAL <<
"KernelEstimator parameter '" << fKernelString <<
"' unknown" <<
Endl;
333 Log() << kVERBOSE <<
"interpreted option string: vRangeMethod: '"
334 << (
const char*)((fVRangeMode == kMinMax) ?
"MinMax" :
335 (fVRangeMode == kUnscaled) ?
"Unscaled" :
336 (fVRangeMode == kRMS ) ?
"RMS" :
"Adaptive") <<
"'" <<
Endl;
337 if (fVRangeMode == kMinMax || fVRangeMode == kRMS)
338 Log() << kVERBOSE <<
"deltaFrac: " << fDeltaFrac <<
Endl;
340 Log() << kVERBOSE <<
"nEventsMin/Max, maxVIterations, initialScale: "
341 << fNEventsMin <<
" " << fNEventsMax
342 <<
" " << fMaxVIterations <<
" " << fInitialScale <<
Endl;
343 Log() << kVERBOSE <<
"KernelEstimator = " << fKernelString <<
Endl;
354 if (IsNormalised())
Log() << kFATAL <<
"\"Normalise\" option cannot be used with PDERS; "
355 <<
"please remove the option from the configuration string, or "
356 <<
"use \"!Normalise\""
364 fInitializedVolumeEle =
kTRUE;
374 if (fInitializedVolumeEle ==
kFALSE) {
375 fInitializedVolumeEle =
kTRUE;
378 assert( fBinaryTree );
385 NoErrorCalc(err, errUpper);
387 return this->CRScalc( *GetEvent() );
394 if (fRegressionReturnVal == 0) fRegressionReturnVal =
new std::vector<Float_t>;
395 fRegressionReturnVal->clear();
398 if (fInitializedVolumeEle ==
kFALSE) {
399 fInitializedVolumeEle =
kTRUE;
402 assert( fBinaryTree );
409 const Event* ev = GetEvent();
410 this->RRScalc( *ev, fRegressionReturnVal );
414 for (std::vector<Float_t>::iterator it = fRegressionReturnVal->begin(); it != fRegressionReturnVal->end(); ++it ) {
419 const Event* evT2 = GetTransformationHandler().InverseTransform( evT );
420 fRegressionReturnVal->clear();
423 fRegressionReturnVal->push_back(evT2->
GetTarget(ivar));
429 return (*fRegressionReturnVal);
437 if (fVRangeMode == kAdaptive || fVRangeMode == kRMS || fVRangeMode == kkNN ) {
439 fBinaryTree->CalcStatistics();
441 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
442 if (!DoRegression()){
445 fAverageRMS.push_back( (rmsS + rmsB)*0.5 );
447 Float_t rms = fBinaryTree->RMS( ivar );
448 fAverageRMS.push_back( rms );
459 if (NULL != fBinaryTree)
delete fBinaryTree;
462 fBinaryTree->SetNormalize(
kTRUE );
465 fBinaryTree->Fill( GetEventCollection(
type) );
468 fBinaryTree->NormalizeTree();
471 if (!DoRegression()) {
476 Log() << kVERBOSE <<
"Signal and background scales: " << fScaleS <<
" " << fScaleB <<
Endl;
485 Log() << kFATAL <<
"GetNvar() == 0" <<
Endl;
490 fkNNMin =
Int_t(fNEventsMin);
491 fkNNMax =
Int_t(fNEventsMax);
493 if (fDelta)
delete fDelta;
494 if (fShift)
delete fShift;
495 fDelta =
new std::vector<Float_t>( GetNvar() );
496 fShift =
new std::vector<Float_t>( GetNvar() );
498 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
499 switch (fVRangeMode) {
505 if (fAverageRMS.size() != GetNvar())
506 Log() << kFATAL <<
"<SetVolumeElement> RMS not computed: " << fAverageRMS.size() <<
Endl;
507 (*fDelta)[ivar] = fAverageRMS[ivar]*fDeltaFrac;
508 Log() << kVERBOSE <<
"delta of var[" << (*fInputVars)[ivar]
509 <<
"\t]: " << fAverageRMS[ivar]
510 <<
"\t | comp with |max - min|: " << (GetXmax( ivar ) - GetXmin( ivar ))
514 (*fDelta)[ivar] = (GetXmax( ivar ) - GetXmin( ivar ))*fDeltaFrac;
517 (*fDelta)[ivar] = fDeltaFrac;
520 Log() << kFATAL <<
"<SetVolumeElement> unknown range-set mode: "
521 << fVRangeMode <<
Endl;
523 (*fShift)[ivar] = 0.5;
533 return ThisPDERS()->GetVolumeContentForRoot( scale );
542 v.ScaleInterval( scale );
544 Double_t count = GetBinaryTree()->SearchVolume( &
v );
551 std::vector<const BinarySearchTreeNode*>& events,
562#ifdef TMVA_MethodPDERS__countByHand__Debug__
565 count = fBinaryTree->SearchVolume( volume );
567 Int_t iS = 0, iB = 0;
569 for (
UInt_t ievt_=0; ievt_<Data()->GetNTrainingEvents(); ievt_++) {
570 const Event * ev = GetTrainingEvent(ievt_);
572 for (
Int_t ivar=0; ivar<nvar; ivar++) {
574 inV = (
x > (*volume->Lower)[ivar] &&
x <= (*volume->Upper)[ivar]);
581 Log() << kVERBOSE <<
"debug: my test: " << in <<
Endl;
582 Log() << kVERBOSE <<
"debug: binTree: " << count <<
Endl <<
Endl;
588 if (fVRangeMode == kRMS || fVRangeMode == kMinMax || fVRangeMode == kUnscaled) {
590 std::vector<Double_t> *lb =
new std::vector<Double_t>( GetNvar() );
591 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) (*lb)[ivar] =
e.GetValue(ivar);
592 std::vector<Double_t> *ub =
new std::vector<Double_t>( *lb );
593 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
594 (*lb)[ivar] -= (*fDelta)[ivar]*(1.0 - (*fShift)[ivar]);
595 (*ub)[ivar] += (*fDelta)[ivar]*(*fShift)[ivar];
600 fBinaryTree->SearchVolume( svolume, &events );
602 else if (fVRangeMode == kAdaptive) {
608 if (MethodPDERS_UseFindRoot) {
612 fHelpVolume = volume;
615 RootFinder rootFinder(
this, 0.01, 50, 200, 10 );
616 Double_t scale = rootFinder.
Root( (fNEventsMin + fNEventsMax)/2.0 );
620 fBinaryTree->SearchVolume( volume, &events );
628 count = fBinaryTree->SearchVolume( volume );
633 while (nEventsO < fNEventsMin) {
635 count = fBinaryTree->SearchVolume( volume );
639 if (i_ > 50)
Log() << kWARNING <<
"warning in event: " <<
e
640 <<
": adaptive volume pre-adjustment reached "
641 <<
">50 iterations in while loop (" << i_ <<
")" <<
Endl;
644 Float_t nEventsE = 0.5*(fNEventsMin + fNEventsMax);
646 Float_t scaleN = fInitialScale;
649 Float_t nEventsBest = nEventsN;
651 for (
Int_t ic=1; ic<fMaxVIterations; ic++) {
652 if (nEventsN < fNEventsMin || nEventsN > fNEventsMax) {
656 v->ScaleInterval( scale );
657 nEventsN = fBinaryTree->SearchVolume(
v );
660 if (nEventsN > 1 && nEventsN - nEventsO != 0)
661 if (scaleN - scaleO != 0)
662 scale += (scaleN - scaleO)/(nEventsN - nEventsO)*(nEventsE - nEventsN);
673 (nEventsN >= fNEventsMin || nEventsBest < nEventsN)) {
674 nEventsBest = nEventsN;
685 nEventsN = nEventsBest;
687 if (nEventsN < fNEventsMin-1 || nEventsN > fNEventsMax+1)
688 Log() << kWARNING <<
"warning in event " <<
e
689 <<
": adaptive volume adjustment reached "
690 <<
"max. #iterations (" << fMaxVIterations <<
")"
691 <<
"[ nEvents: " << nEventsN <<
" " << fNEventsMin <<
" " << fNEventsMax <<
"]"
695 fBinaryTree->SearchVolume( volume, &events );
700 }
else if (fVRangeMode == kkNN) {
705 Int_t kNNcount = fBinaryTree->SearchVolumeWithMaxLimit( &
v, &events, fkNNMax+1 );
710 while ( !(kNNcount >= fkNNMin && kNNcount <= fkNNMax) ) {
711 if (kNNcount < fkNNMin) {
715 else if (kNNcount > fkNNMax) {
723 kNNcount = fBinaryTree->SearchVolumeWithMaxLimit( &
v, &events, fkNNMax+1 );
727 if (t_times == fMaxVIterations) {
728 Log() << kWARNING <<
"warning in event" <<
e
729 <<
": kNN volume adjustment reached "
730 <<
"max. #iterations (" << fMaxVIterations <<
")"
731 <<
"[ kNN: " << fkNNMin <<
" " << fkNNMax <<
Endl;
738 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
739 dim_normalization [ivar] = 1.0 / ((*
v.fUpper)[ivar] - (*
v.fLower)[ivar]);
742 std::vector<const BinarySearchTreeNode*> tempVector;
744 if (kNNcount >= fkNNMin) {
745 std::vector<Double_t> *distances =
new std::vector<Double_t>( kNNcount );
749 (*distances)[j] = GetNormalizedDistance (
e, *events[j], dim_normalization );
752 std::vector<Double_t>::iterator wsk = distances->begin();
753 for (
Int_t j=0;j<fkNNMin-1;++j) ++wsk;
754 std::nth_element( distances->begin(), wsk, distances->end() );
759 Double_t dist = GetNormalizedDistance(
e, *events[j], dim_normalization );
761 if (
dist <= (*distances)[fkNNMin-1])
762 tempVector.push_back( events[j] );
764 fMax_distance = (*distances)[fkNNMin-1];
767 delete[] dim_normalization;
773 Log() << kFATAL <<
"<GetSample> unknown RangeMode: " << fVRangeMode <<
Endl;
782 std::vector<const BinarySearchTreeNode*> events;
787 std::vector<Double_t> *lb =
new std::vector<Double_t>( GetNvar() );
788 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) (*lb)[ivar] =
e.GetValue(ivar);
790 std::vector<Double_t> *ub =
new std::vector<Double_t>( *lb );
791 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
792 (*lb)[ivar] -= (*fDelta)[ivar]*(1.0 - (*fShift)[ivar]);
793 (*ub)[ivar] += (*fDelta)[ivar]*(*fShift)[ivar];
798 GetSample(
e, events, volume );
799 Double_t count = CKernelEstimate(
e, events, *volume );
811 std::vector<const BinarySearchTreeNode*> events;
816 std::vector<Double_t> *lb =
new std::vector<Double_t>( GetNvar() );
817 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) (*lb)[ivar] =
e.GetValue(ivar);
819 std::vector<Double_t> *ub =
new std::vector<Double_t>( *lb );
820 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
821 (*lb)[ivar] -= (*fDelta)[ivar]*(1.0 - (*fShift)[ivar]);
822 (*ub)[ivar] += (*fDelta)[ivar]*(*fShift)[ivar];
826 GetSample(
e, events, volume );
827 RKernelEstimate(
e, events, *volume, count );
837 std::vector<const BinarySearchTreeNode*>& events,
Volume&
v )
840 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++)
841 dim_normalization [ivar] = 2 / ((*
v.fUpper)[ivar] - (*
v.fLower)[ivar]);
847 for (std::vector<const BinarySearchTreeNode*>::iterator iev = events.begin(); iev != events.end(); ++iev) {
850 Double_t normalized_distance = GetNormalizedDistance (event, *(*iev), dim_normalization);
854 if (normalized_distance > 1 && fKernelEstimator !=
kBox)
continue;
856 if ( (*iev)->GetClass()==fSignalClass )
857 pdfSumS += ApplyKernelFunction (normalized_distance) * (*iev)->GetWeight();
859 pdfSumB += ApplyKernelFunction (normalized_distance) * (*iev)->GetWeight();
861 pdfSumS = KernelNormalization( pdfSumS < 0. ? 0. : pdfSumS );
862 pdfSumB = KernelNormalization( pdfSumB < 0. ? 0. : pdfSumB );
864 delete[] dim_normalization;
866 if (pdfSumS < 1
e-20 && pdfSumB < 1
e-20)
return 0.5;
867 if (pdfSumB < 1
e-20)
return 1.0;
868 if (pdfSumS < 1
e-20)
return 0.0;
870 Float_t r = pdfSumB*fScaleB/(pdfSumS*fScaleS);
871 return 1.0/(
r + 1.0);
878 std::vector<const BinarySearchTreeNode*>& events,
Volume&
v,
879 std::vector<Float_t>* pdfSum )
882 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++)
883 dim_normalization [ivar] = 2 / ((*
v.fUpper)[ivar] - (*
v.fLower)[ivar]);
890 for (
Int_t ivar = 0; ivar < fNRegOut ; ivar++)
891 pdfSum->push_back( 0 );
894 for (std::vector<const BinarySearchTreeNode*>::iterator iev = events.begin(); iev != events.end(); ++iev) {
897 Double_t normalized_distance = GetNormalizedDistance (event, *(*iev), dim_normalization);
901 if (normalized_distance > 1 && fKernelEstimator !=
kBox)
continue;
903 for (
Int_t ivar = 0; ivar < fNRegOut ; ivar++) {
904 pdfSum->at(ivar) += ApplyKernelFunction (normalized_distance) * (*iev)->GetWeight() * (*iev)->GetTargets()[ivar];
905 pdfDiv += ApplyKernelFunction (normalized_distance) * (*iev)->GetWeight();
909 delete[] dim_normalization;
914 for (
Int_t ivar = 0; ivar < fNRegOut ; ivar++)
915 pdfSum->at(ivar) /= pdfDiv;
926 switch (fKernelEstimator) {
932 return (1 - normalized_distance);
942 Double_t side_crossings = 2 + ((int) fKernelEstimator) - ((int) kSinc3);
943 return NormSinc (side_crossings * normalized_distance);
947 return LanczosFilter (2, normalized_distance);
950 return LanczosFilter (3, normalized_distance);
953 return LanczosFilter (5, normalized_distance);
956 return LanczosFilter (8, normalized_distance);
959 Double_t x = normalized_distance / fMax_distance;
965 Log() << kFATAL <<
"Kernel estimation function unsupported. Enumerator is " << fKernelEstimator <<
Endl;
982 if (ret != 0.0)
return ret*pdf;
985 switch (fKernelEstimator) {
1011 Log() << kFATAL <<
"Kernel estimation function unsupported. Enumerator is " << fKernelEstimator <<
Endl;
1029 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
1043 if (x < 10e-10 && x > -10
e-10) {
1064 if (x < 10e-10 && x > -10
e-10) {
1088 if (
d < 1
e-10)
return 1;
1091 Float_t err =
f*countB*countB*sumW2S +
f*countS*countS*sumW2B;
1093 if (err < 1
e-10)
return 1;
1105 fBinaryTree->AddXMLTo(wght);
1107 Log() << kFATAL <<
"Signal and background binary search tree not available" <<
Endl;
1115 if (NULL != fBinaryTree)
delete fBinaryTree;
1119 Log() << kFATAL <<
"Could not create BinarySearchTree from XML" <<
Endl;
1121 Log() << kFATAL <<
"Could not create BinarySearchTree from XML" <<
Endl;
1122 fBinaryTree->SetPeriode( GetNvar() );
1123 fBinaryTree->CalcStatistics();
1124 fBinaryTree->CountNodes();
1131 Log() << kINFO <<
"signal and background scales: " << fScaleS <<
" " << fScaleB <<
Endl;
1134 fInitializedVolumeEle =
kTRUE;
1142 if (NULL != fBinaryTree)
delete fBinaryTree;
1146 istr >> *fBinaryTree;
1148 fBinaryTree->SetPeriode( GetNvar() );
1150 fBinaryTree->CalcStatistics();
1152 fBinaryTree->CountNodes();
1158 Log() << kINFO <<
"signal and background scales: " << fScaleS <<
" " << fScaleB <<
Endl;
1164 fInitializedVolumeEle =
kTRUE;
1186 return GetMethodPDERSThreadLocal();
1193 GetMethodPDERSThreadLocal() =
this;
1201 fout <<
" // not implemented for class: \"" << className <<
"\"" << std::endl;
1202 fout <<
"};" << std::endl;
1216 Log() <<
"PDERS is a generalization of the projective likelihood classifier " <<
Endl;
1217 Log() <<
"to N dimensions, where N is the number of input variables used." <<
Endl;
1218 Log() <<
"In its adaptive form it is mostly equivalent to k-Nearest-Neighbor" <<
Endl;
1219 Log() <<
"(k-NN) methods. If the multidimensional PDF for signal and background" <<
Endl;
1220 Log() <<
"were known, this classifier would exploit the full information" <<
Endl;
1221 Log() <<
"contained in the input variables, and would hence be optimal. In " <<
Endl;
1222 Log() <<
"practice however, huge training samples are necessary to sufficiently " <<
Endl;
1223 Log() <<
"populate the multidimensional phase space. " <<
Endl;
1225 Log() <<
"The simplest implementation of PDERS counts the number of signal" <<
Endl;
1226 Log() <<
"and background events in the vicinity of a test event, and returns" <<
Endl;
1227 Log() <<
"a weight according to the majority species of the neighboring events." <<
Endl;
1228 Log() <<
"A more involved version of PDERS (selected by the option \"KernelEstimator\")" <<
Endl;
1229 Log() <<
"uses Kernel estimation methods to approximate the shape of the PDF." <<
Endl;
1233 Log() <<
"PDERS can be very powerful in case of strongly non-linear problems, " <<
Endl;
1234 Log() <<
"e.g., distinct islands of signal and background regions. Because of " <<
Endl;
1235 Log() <<
"the exponential growth of the phase space, it is important to restrict" <<
Endl;
1236 Log() <<
"the number of input variables (dimension) to the strictly necessary." <<
Endl;
1238 Log() <<
"Note that PDERS is a slowly responding classifier. Moreover, the necessity" <<
Endl;
1239 Log() <<
"to store the entire binary tree in memory, to avoid accessing virtual " <<
Endl;
1240 Log() <<
"memory, limits the number of training events that can effectively be " <<
Endl;
1241 Log() <<
"used to model the multidimensional PDF." <<
Endl;
1245 Log() <<
"If the PDERS response is found too slow when using the adaptive volume " <<
Endl;
1246 Log() <<
"size (option \"VolumeRangeMode=Adaptive\"), it might be found beneficial" <<
Endl;
1247 Log() <<
"to reduce the number of events required in the volume, and/or to enlarge" <<
Endl;
1248 Log() <<
"the allowed range (\"NeventsMin/Max\"). PDERS is relatively insensitive" <<
Endl;
1249 Log() <<
"to the width (\"GaussSigma\") of the Gaussian kernel (if used)." <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Node for the BinarySearch or Decision Trees.
const std::vector< Float_t > & GetEventV() const
A simple Binary search tree including a volume search method.
static BinarySearchTree * CreateFromXML(void *node, UInt_t tmva_Version_Code=TMVA_VERSION_CODE)
re-create a new tree (decision tree or search tree) from XML
Class that contains all the data information.
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
void SetTarget(UInt_t itgt, Float_t value)
set the target value (dimension itgt) to value
UInt_t GetNTargets() const
accessor to the number of targets
Float_t GetTarget(UInt_t itgt) const
Virtual base Class for all MVA method.
This is a generalization of the above Likelihood methods to dimensions, where is the number of inpu...
void WriteWeightsToStream(TFile &rf) const
write training sample (TTree) to file
void CreateBinarySearchTree(Types::ETreeType type)
create binary search trees for signal and background
BinarySearchTree * fBinaryTree
virtual ~MethodPDERS(void)
destructor
MethodPDERS(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption)
standard constructor for the PDERS method
void GetSample(const Event &e, std::vector< const BinarySearchTreeNode * > &events, Volume *volume)
Float_t GetError(Float_t countS, Float_t countB, Float_t sumW2S, Float_t sumW2B) const
statistical error estimate for RS estimator
static MethodPDERS * ThisPDERS(void)
static pointer to this object
Double_t KernelNormalization(Double_t pdf)
Calculating the normalization factor only once (might need a reset at some point.
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
init the size of a volume element using a defined fraction of the volume containing the entire events
void ReadWeightsFromXML(void *wghtnode)
void ProcessOptions()
process the options specified by the user
void RRScalc(const Event &, std::vector< Float_t > *count)
void GetHelpMessage() const
get help message text
void UpdateThis()
update static this pointer
void Train(void)
this is a dummy training: the preparation work to do is the construction of the binary tree as a poin...
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
Double_t CRScalc(const Event &)
void DeclareOptions()
define the options (their key words) that can be set in the option string.
void CalcAverages()
compute also average RMS values required for adaptive Gaussian
void RKernelEstimate(const Event &, std::vector< const BinarySearchTreeNode * > &, Volume &, std::vector< Float_t > *pdfSum)
normalization factors so we can work with radius 1 hyperspheres
void ReadWeightsFromStream(std::istream &istr)
read weight info from file
const std::vector< Float_t > & GetRegressionValues()
Double_t NormSinc(Double_t x)
NormSinc.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
PDERS can handle classification with 2 classes and regression with one or more regression-targets.
void AddWeightsXMLTo(void *parent) const
write weights to xml file
void SetVolumeElement(void)
defines volume dimensions
void Init(void)
default initialisation routine called by all constructors
Double_t LanczosFilter(Int_t level, Double_t x)
Lanczos Filter.
Double_t CKernelEstimate(const Event &, std::vector< const BinarySearchTreeNode * > &, Volume &)
normalization factors so we can work with radius 1 hyperspheres
Double_t ApplyKernelFunction(Double_t normalized_distance)
from the normalized euclidean distance calculate the distance for a certain kernel
Double_t GetNormalizedDistance(const TMVA::Event &base_event, const BinarySearchTreeNode &sample_event, Double_t *dim_normalization)
We use Euclidian metric here. Might not be best or most efficient.
static Double_t IGetVolumeContentForRoot(Double_t)
Interface to RootFinder.
Double_t GetVolumeContentForRoot(Double_t)
count number of events in rescaled volume
Root finding using Brents algorithm (translated from CERNLIB function RZERO)
Double_t Root(Double_t refValue)
Root finding using Brents algorithm; taken from CERNLIB function RZERO.
Singleton class for Global types used by TMVA.
Volume for BinarySearchTree.
void ScaleInterval(Double_t f)
"scale" the volume by symmetrically blowing up the interval in each dimension
double dist(Rotation3D const &r1, Rotation3D const &r2)
Abstract ClassifierFactory template that handles arbitrary types.
MsgLogger & Endl(MsgLogger &ml)
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculate a gaussian function with mean and sigma.
Double_t Sqrt(Double_t x)
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Double_t Gamma(Double_t z)
Computation of gamma(z) for all z.