Logo ROOT   6.16/01
Reference Guide
CostComplexityPruneTool.cxx
Go to the documentation of this file.
1/**********************************************************************************
2 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
3 * Package: TMVA *
4 * Class : TMVA::DecisionTree *
5 * Web : http://tmva.sourceforge.net *
6 * *
7 * Description: *
8 * Implementation of a Decision Tree *
9 * *
10 * Authors (alphabetical): *
11 * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
12 * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
13 * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
14 * Doug Schouten <dschoute@sfu.ca> - Simon Fraser U., Canada *
15 * *
16 * Copyright (c) 2005: *
17 * CERN, Switzerland *
18 * U. of Victoria, Canada *
19 * MPI-K Heidelberg, Germany *
20 * *
21 * Redistribution and use in source and binary forms, with or without *
22 * modification, are permitted according to the terms listed in LICENSE *
23 * (http://mva.sourceforge.net/license.txt) *
24 * *
25 **********************************************************************************/
26
27/*! \class TMVA::CostComplexityPruneTool
28\ingroup TMVA
29A class to prune a decision tree using the Cost Complexity method.
30(see "Classification and Regression Trees" by Leo Breiman et al)
31
32### Some definitions:
33
34 - \f$ T_{max} \f$ - the initial, usually highly overtrained tree, that is to be pruned back
35 - \f$ R(T) \f$ - quality index (Gini, misclassification rate, or other) of a tree \f$ T \f$
36 - \f$ \sim T \f$ - set of terminal nodes in \f$ T \f$
37 - \f$ T' \f$ - the pruned subtree of \f$ T_max \f$ that has the best quality index \f$ R(T') \f$
38 - \f$ \alpha \f$ - the prune strength parameter in Cost Complexity pruning \f$ (R_{\alpha}(T) = R(T) + \alpha*|\sim T|) \f$
39
40There are two running modes in CCPruner: (i) one may select a prune strength and prune back
41the tree \f$ T_{max}\f$ until the criterion:
42\f[
43 \alpha < \frac{R(T) - R(t)}{|\sim T_t| - 1}
44\f]
45
46is true for all nodes t in \f$ T \f$, or (ii) the algorithm finds the sequence of critical points
47\f$ \alpha_k < \alpha_{k+1} ... < \alpha_K \f$ such that \f$ T_K = root(T_{max}) \f$ and then selects the optimally-pruned
48subtree, defined to be the subtree with the best quality index for the validation sample.
49*/
50
52
53#include "TMVA/MsgLogger.h"
54#include "TMVA/SeparationBase.h"
55#include "TMVA/DecisionTree.h"
56
57#include "RtypesCore.h"
58
59#include <fstream>
60#include <limits>
61#include <math.h>
62
63using namespace TMVA;
64
65
66////////////////////////////////////////////////////////////////////////////////
67/// the constructor for the cost complexity pruning
68
69CostComplexityPruneTool::CostComplexityPruneTool( SeparationBase* qualityIndex ) :
70 IPruneTool(),
71 fLogger(new MsgLogger("CostComplexityPruneTool") )
72{
73 fOptimalK = -1;
74
75 // !! changed from Dougs code. Now use the QualityIndex stored already
76 // in the nodes when no "new" QualityIndex calculator is given. Like this
77 // I can easily implement the Regression. For Regression, the pruning uses the
78 // same separation index as in the tree building, hence doesn't need to re-calculate
79 // (which would need more info than simply "s" and "b")
80
81 fQualityIndexTool = qualityIndex;
82
83 //fLogger->SetMinType( kDEBUG );
84 fLogger->SetMinType( kWARNING );
85}
86
87////////////////////////////////////////////////////////////////////////////////
88/// the destructor for the cost complexity pruning
89
91 if(fQualityIndexTool != NULL) delete fQualityIndexTool;
92}
93
94////////////////////////////////////////////////////////////////////////////////
95/// the routine that basically "steers" the pruning process. Call the calculation of
96/// the pruning sequence, the tree quality and alike..
97
100 const IPruneTool::EventSample* validationSample,
101 Bool_t isAutomatic )
102{
103 if( isAutomatic ) SetAutomatic();
104
105 if( dt == NULL || (IsAutomatic() && validationSample == NULL) ) {
106 // must have a valid decision tree to prune, and if the prune strength
107 // is to be chosen automatically, must have a test sample from
108 // which to calculate the quality of the pruned tree(s)
109 return NULL;
110 }
111
112 Double_t Q = -1.0;
113 Double_t W = 1.0;
114
115 if(IsAutomatic()) {
116 // run the pruning validation sample through the unpruned tree
117 dt->ApplyValidationSample(validationSample);
118 W = dt->GetSumWeights(validationSample); // get the sum of weights in the pruning validation sample
119 // calculate the quality of the tree in the unpruned case
120 Q = dt->TestPrunedTreeQuality();
121
122 Log() << kDEBUG << "Node purity limit is: " << dt->GetNodePurityLimit() << Endl;
123 Log() << kDEBUG << "Sum of weights in pruning validation sample: " << W << Endl;
124 Log() << kDEBUG << "Quality of tree prior to any pruning is " << Q/W << Endl;
125 }
126
127 // store the cost complexity metadata for the decision tree at each node
128 try {
130 }
131 catch(const std::string &error) {
132 Log() << kERROR << "Couldn't initialize the tree meta data because of error ("
133 << error << ")" << Endl;
134 return NULL;
135 }
136
137 Log() << kDEBUG << "Automatic cost complexity pruning is " << (IsAutomatic()?"on":"off") << "." << Endl;
138
139 try {
140 Optimize( dt, W ); // run the cost complexity pruning algorithm
141 }
142 catch(const std::string &error) {
143 Log() << kERROR << "Error optimizing pruning sequence ("
144 << error << ")" << Endl;
145 return NULL;
146 }
147
148 Log() << kDEBUG << "Index of pruning sequence to stop at: " << fOptimalK << Endl;
149
150 PruningInfo* info = new PruningInfo();
151
152
153 if(fOptimalK < 0) {
154 // no pruning necessary, or wasn't able to compute a sequence
155 info->PruneStrength = 0;
156 info->QualityIndex = Q/W;
157 info->PruneSequence.clear();
158 Log() << kINFO << "no proper pruning could be calculated. Tree "
159 << dt->GetTreeID() << " will not be pruned. Do not worry if this "
160 << " happens for a few trees " << Endl;
161 return info;
162 }
164 Log() << kDEBUG << " prune until k=" << fOptimalK << " with alpha="<<fPruneStrengthList[fOptimalK]<< Endl;
165 for( Int_t i = 0; i < fOptimalK; i++ ){
166 info->PruneSequence.push_back(fPruneSequence[i]);
167 }
168 if( IsAutomatic() ){
170 }
171 else {
173 }
174
175 return info;
176}
177
178////////////////////////////////////////////////////////////////////////////////
179/// initialise "meta data" for the pruning, like the "costcomplexity", the
180/// critical alpha, the minimal alpha down the tree, etc... for each node!!
181
183 if( n == NULL ) return;
184
185 Double_t s = n->GetNSigEvents();
186 Double_t b = n->GetNBkgEvents();
187 // set R(t) = N_events*Gini(t) or MisclassificationError(t), etc.
189 else n->SetNodeR( (s+b)*n->GetSeparationIndex() );
190
191 if(n->GetLeft() != NULL && n->GetRight() != NULL) { // n is an interior (non-leaf) node
192 n->SetTerminal(kFALSE);
193 // traverse the tree
194 InitTreePruningMetaData(n->GetLeft());
195 InitTreePruningMetaData(n->GetRight());
196 // set |~T_t|
197 n->SetNTerminal( n->GetLeft()->GetNTerminal() +
198 n->GetRight()->GetNTerminal());
199 // set R(T) = sum[n' in ~T]{ R(n') }
200 n->SetSubTreeR( (n->GetLeft()->GetSubTreeR() +
201 n->GetRight()->GetSubTreeR()));
202 // set alpha_c, the alpha value at which it becomes advantageous to prune at node n
203 n->SetAlpha( ((n->GetNodeR() - n->GetSubTreeR()) /
204 (n->GetNTerminal() - 1)));
205
206 // G(t) = min( alpha_c, G(l(n)), G(r(n)) )
207 // the minimum alpha in subtree rooted at this node
208 n->SetAlphaMinSubtree( std::min(n->GetAlpha(), std::min(n->GetLeft()->GetAlphaMinSubtree(),
209 n->GetRight()->GetAlphaMinSubtree())));
210 n->SetCC(n->GetAlpha());
211
212 } else { // n is a terminal node
213 n->SetNTerminal( 1 ); n->SetTerminal( );
214 if (fQualityIndexTool) n->SetSubTreeR(((s+b)*fQualityIndexTool->GetSeparationIndex(s,b)));
215 else n->SetSubTreeR( (s+b)*n->GetSeparationIndex() );
216 n->SetAlpha(std::numeric_limits<double>::infinity( ));
217 n->SetAlphaMinSubtree(std::numeric_limits<double>::infinity( ));
218 n->SetCC(n->GetAlpha());
219 }
220
221 // DecisionTreeNode* R = (DecisionTreeNode*)mdt->GetRoot();
222 // Double_t x = R->GetAlphaMinSubtree();
223 // Log() << "alphaMin(Root) = " << x << Endl;
224}
225
226
227////////////////////////////////////////////////////////////////////////////////
228/// after the critical \f$ \alpha \f$ values (at which the corresponding nodes would
229/// be pruned away) had been established in the "InitMetaData" we need now:
230/// automatic pruning:
231///
232/// find the value of \f$ \alpha \f$ for which the test sample gives minimal error,
233/// on the tree with all nodes pruned that have \f$ \alpha_{critical} < \alpha \f$,
234/// fixed parameter pruning
235///
236
238 Int_t k = 1;
239 Double_t alpha = -1.0e10;
241
242 fQualityIndexList.clear();
243 fPruneSequence.clear();
244 fPruneStrengthList.clear();
245
247
248 Double_t qmin = 0.0;
249 if(IsAutomatic()){
250 // initialize the tree quality (actually at this stage, it is the quality of the yet unpruned tree
251 qmin = dt->TestPrunedTreeQuality()/weights;
252 }
253
254 // now prune the tree in steps until it is gone. At each pruning step, the pruning
255 // takes place at the node that is regarded as the "weakest link".
256 // for automatic pruning, at each step, we calculate the current quality of the
257 // tree and in the end we will prune at the minimum of the tree quality
258 // for the fixed parameter pruning, the cut is simply set at a relative position
259 // in the sequence according to the "length" of the sequence of pruned trees.
260 // 100: at the end (pruned until the root node would be the next pruning candidate
261 // 50: in the middle of the sequence
262 // etc...
263 while(R->GetNTerminal() > 1) { // prune upwards to the root node
264
265 // initialize alpha
266 alpha = TMath::Max(R->GetAlphaMinSubtree(), alpha);
267
268 if( R->GetAlphaMinSubtree() >= R->GetAlpha() ) {
269 Log() << kDEBUG << "\nCaught trying to prune the root node!" << Endl;
270 break;
271 }
272
273
274 DecisionTreeNode* t = R;
275
276 // descend to the weakest link
277 while(t->GetAlphaMinSubtree() < t->GetAlpha()) {
278 // std::cout << t->GetAlphaMinSubtree() << " " << t->GetAlpha()<< " "
279 // << t->GetAlphaMinSubtree()- t->GetAlpha()<< " t==R?" << int(t == R) << std::endl;
280 // while( (t->GetAlphaMinSubtree() - t->GetAlpha()) < epsilon) {
281 // if(TMath::Abs(t->GetAlphaMinSubtree() - t->GetLeft()->GetAlphaMinSubtree())/TMath::Abs(t->GetAlphaMinSubtree()) < epsilon) {
283 t = t->GetLeft();
284 } else {
285 t = t->GetRight();
286 }
287 }
288
289 if( t == R ) {
290 Log() << kDEBUG << "\nCaught trying to prune the root node!" << Endl;
291 break;
292 }
293
294 DecisionTreeNode* n = t;
295
296 // Log() << kDEBUG << "alpha[" << k << "]: " << alpha << Endl;
297 // Log() << kDEBUG << "===========================" << Endl
298 // << "Pruning branch listed below the node" << Endl;
299 // t->Print( Log() );
300 // Log() << kDEBUG << "===========================" << Endl;
301 // t->PrintRecPrune( Log() );
302
303 dt->PruneNodeInPlace(t); // prune the branch rooted at node t
304
305 while(t != R) { // go back up the (pruned) tree and recalculate R(T), alpha_c
306 t = t->GetParent();
308 t->SetSubTreeR(t->GetLeft()->GetSubTreeR() + t->GetRight()->GetSubTreeR());
309 t->SetAlpha((t->GetNodeR() - t->GetSubTreeR())/(t->GetNTerminal() - 1));
310 t->SetAlphaMinSubtree(std::min(t->GetAlpha(), std::min(t->GetLeft()->GetAlphaMinSubtree(),
311 t->GetRight()->GetAlphaMinSubtree())));
312 t->SetCC(t->GetAlpha());
313 }
314 k += 1;
315
316 Log() << kDEBUG << "after this pruning step I would have " << R->GetNTerminal() << " remaining terminal nodes " << Endl;
317
318 if(IsAutomatic()) {
319 Double_t q = dt->TestPrunedTreeQuality()/weights;
320 fQualityIndexList.push_back(q);
321 }
322 else {
323 fQualityIndexList.push_back(1.0);
324 }
325 fPruneSequence.push_back(n);
326 fPruneStrengthList.push_back(alpha);
327 }
328
329 if(fPruneSequence.empty()) {
330 fOptimalK = -1;
331 return;
332 }
333
334 if(IsAutomatic()) {
335 k = -1;
336 for(UInt_t i = 0; i < fQualityIndexList.size(); i++) {
337 if(fQualityIndexList[i] < qmin) {
338 qmin = fQualityIndexList[i];
339 k = i;
340 }
341 }
342 fOptimalK = k;
343 }
344 else {
345 // regularize the prune strength relative to this tree
346 fOptimalK = int(fPruneStrength/100.0 * fPruneSequence.size() );
347 Log() << kDEBUG << "SequenzeSize="<<fPruneSequence.size()
348 << " fOptimalK " << fOptimalK << Endl;
349
350 }
351
352 Log() << kDEBUG << "\n************ Summary for Tree " << dt->GetTreeID() << " *******" << Endl
353 << "Number of trees in the sequence: " << fPruneSequence.size() << Endl;
354
355 Log() << kDEBUG << "Pruning strength parameters: [";
356 for(UInt_t i = 0; i < fPruneStrengthList.size()-1; i++)
357 Log() << kDEBUG << fPruneStrengthList[i] << ", ";
358 Log() << kDEBUG << fPruneStrengthList[fPruneStrengthList.size()-1] << "]" << Endl;
359
360 Log() << kDEBUG << "Misclassification rates: [";
361 for(UInt_t i = 0; i < fQualityIndexList.size()-1; i++)
362 Log() << kDEBUG << fQualityIndexList[i] << ", ";
363 Log() << kDEBUG << fQualityIndexList[fQualityIndexList.size()-1] << "]" << Endl;
364
365 Log() << kDEBUG << "Prune index: " << fOptimalK+1 << Endl;
366
367}
368
#define b(i)
Definition: RSha256.hxx:100
#define R(a, b, c, d, e, f, g, h, i)
Definition: RSha256.hxx:110
int Int_t
Definition: RtypesCore.h:41
unsigned int UInt_t
Definition: RtypesCore.h:42
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
float * q
Definition: THbookFile.cxx:87
void InitTreePruningMetaData(DecisionTreeNode *n)
the optimal index of the prune sequence
std::vector< Double_t > fPruneStrengthList
map of weakest links (i.e., branches to prune) -> pruning index
virtual ~CostComplexityPruneTool()
the destructor for the cost complexity pruning
virtual PruningInfo * CalculatePruningInfo(DecisionTree *dt, const IPruneTool::EventSample *testEvents=NULL, Bool_t isAutomatic=kFALSE)
the routine that basically "steers" the pruning process.
std::vector< DecisionTreeNode * > fPruneSequence
the quality index used to calculate R(t), R(T) = sum[t in ~T]{ R(t) }
std::vector< Double_t > fQualityIndexList
map of alpha -> pruning index
void Optimize(DecisionTree *dt, Double_t weights)
after the critical values (at which the corresponding nodes would be pruned away) had been establish...
MsgLogger & Log() const
output stream to save logging information
Int_t fOptimalK
map of R(T) -> pruning index
Double_t GetSubTreeR() const
void SetAlphaMinSubtree(Double_t g)
Double_t GetAlphaMinSubtree() const
void SetSubTreeR(Double_t r)
virtual DecisionTreeNode * GetLeft() const
Double_t GetNodeR() const
Double_t GetAlpha() const
void SetAlpha(Double_t alpha)
virtual DecisionTreeNode * GetParent() const
virtual DecisionTreeNode * GetRight() const
Implementation of a Decision Tree.
Definition: DecisionTree.h:64
Double_t GetNodePurityLimit() const
Definition: DecisionTree.h:161
void ApplyValidationSample(const EventConstList *validationSample) const
run the validation sample through the (pruned) tree and fill in the nodes the variables NSValidation ...
virtual DecisionTreeNode * GetRoot() const
Definition: DecisionTree.h:93
void PruneNodeInPlace(TMVA::DecisionTreeNode *node)
prune a node temporarily (without actually deleting its descendants which allows testing the pruned t...
Double_t TestPrunedTreeQuality(const DecisionTreeNode *dt=NULL, Int_t mode=0) const
return the misclassification rate of a pruned tree a "pruned tree" may have set the variable "IsTermi...
Double_t GetSumWeights(const EventConstList *validationSample) const
calculate the normalization factor for a pruning validation sample
IPruneTool - a helper interface class to prune a decision tree.
Definition: IPruneTool.h:70
void SetAutomatic()
Definition: IPruneTool.h:94
Double_t fPruneStrength
Definition: IPruneTool.h:101
std::vector< const Event * > EventSample
Definition: IPruneTool.h:74
Bool_t IsAutomatic() const
Definition: IPruneTool.h:95
ostringstream derivative to redirect and format output
Definition: MsgLogger.h:59
void SetMinType(EMsgType minType)
Definition: MsgLogger.h:72
Double_t QualityIndex
Definition: IPruneTool.h:45
std::vector< DecisionTreeNode * > PruneSequence
the regularization parameter for pruning
Definition: IPruneTool.h:47
Double_t PruneStrength
quality measure for a pruned subtree T of T_max
Definition: IPruneTool.h:46
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
virtual Double_t GetSeparationIndex(const Double_t s, const Double_t b)=0
const Int_t n
Definition: legend1.C:16
static double Q[]
static constexpr double s
Abstract ClassifierFactory template that handles arbitrary types.
MsgLogger & Endl(MsgLogger &ml)
Definition: MsgLogger.h:158
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:212
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
REAL epsilon
Definition: triangle.c:617