Logo ROOT   6.14/05
Reference Guide
TH2.cxx
Go to the documentation of this file.
1 // @(#)root/hist:$Id$
2 // Author: Rene Brun 26/12/94
3 
4 /*************************************************************************
5  * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6  * All rights reserved. *
7  * *
8  * For the licensing terms see $ROOTSYS/LICENSE. *
9  * For the list of contributors see $ROOTSYS/README/CREDITS. *
10  *************************************************************************/
11 
12 #include "TROOT.h"
13 #include "TClass.h"
14 #include "THashList.h"
15 #include "TH2.h"
16 #include "TVirtualPad.h"
17 #include "TF2.h"
18 #include "TProfile.h"
19 #include "TRandom.h"
20 #include "TMatrixFBase.h"
21 #include "TMatrixDBase.h"
22 #include "THLimitsFinder.h"
23 #include "TError.h"
24 #include "TMath.h"
25 #include "TObjString.h"
26 #include "TVirtualHistPainter.h"
27 
28 
29 ClassImp(TH2);
30 
31 /** \addtogroup Hist
32 @{
33 \class TH2C
34 \brief 2-D histogram with a byte per channel (see TH1 documentation)
35 \class TH2S
36 \brief 2-D histogram with a short per channel (see TH1 documentation)
37 \class TH2I
38 \brief 2-D histogram with an int per channel (see TH1 documentation)}
39 \class TH2F
40 \brief 2-D histogram with a float per channel (see TH1 documentation)}
41 \class TH2D
42 \brief 2-D histogram with a double per channel (see TH1 documentation)}
43 @}
44 */
45 
46 /** \class TH2
47  Service class for 2-Dim histogram classes
48 
49 - TH2C a 2-D histogram with one byte per cell (char)
50 - TH2S a 2-D histogram with two bytes per cell (short integer)
51 - TH2I a 2-D histogram with four bytes per cell (32 bits integer)
52 - TH2F a 2-D histogram with four bytes per cell (float)
53 - TH2D a 2-D histogram with eight bytes per cell (double)
54 */
55 
56 
57 ////////////////////////////////////////////////////////////////////////////////
58 /// Constructor.
59 
61 {
62  fDimension = 2;
63  fScalefactor = 1;
64  fTsumwy = fTsumwy2 = fTsumwxy = 0;
65 }
66 
67 
68 ////////////////////////////////////////////////////////////////////////////////
69 /// See comments in the TH1 base class constructors.
70 
71 TH2::TH2(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
72  ,Int_t nbinsy,Double_t ylow,Double_t yup)
73  :TH1(name,title,nbinsx,xlow,xup)
74 {
75  fDimension = 2;
76  fScalefactor = 1;
77  fTsumwy = fTsumwy2 = fTsumwxy = 0;
78  if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
79  fYaxis.Set(nbinsy,ylow,yup);
80  fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
81 }
82 
83 
84 ////////////////////////////////////////////////////////////////////////////////
85 /// See comments in the TH1 base class constructors.
86 
87 TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
88  ,Int_t nbinsy,Double_t ylow,Double_t yup)
89  :TH1(name,title,nbinsx,xbins)
90 {
91  fDimension = 2;
92  fScalefactor = 1;
93  fTsumwy = fTsumwy2 = fTsumwxy = 0;
94  if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
95  fYaxis.Set(nbinsy,ylow,yup);
96  fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
97 }
98 
99 
100 ////////////////////////////////////////////////////////////////////////////////
101 /// See comments in the TH1 base class constructors.
102 
103 TH2::TH2(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
104  ,Int_t nbinsy,const Double_t *ybins)
105  :TH1(name,title,nbinsx,xlow,xup)
106 {
107  fDimension = 2;
108  fScalefactor = 1;
109  fTsumwy = fTsumwy2 = fTsumwxy = 0;
110  if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
111  if (ybins) fYaxis.Set(nbinsy,ybins);
112  else fYaxis.Set(nbinsy,0,1);
113  fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
114 }
115 
116 
117 ////////////////////////////////////////////////////////////////////////////////
118 /// See comments in the TH1 base class constructors.
119 
120 TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
121  ,Int_t nbinsy,const Double_t *ybins)
122  :TH1(name,title,nbinsx,xbins)
123 {
124  fDimension = 2;
125  fScalefactor = 1;
126  fTsumwy = fTsumwy2 = fTsumwxy = 0;
127  if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
128  if (ybins) fYaxis.Set(nbinsy,ybins);
129  else fYaxis.Set(nbinsy,0,1);
130  fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor
131 }
132 
133 
134 ////////////////////////////////////////////////////////////////////////////////
135 /// See comments in the TH1 base class constructors.
136 
137 TH2::TH2(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
138  ,Int_t nbinsy,const Float_t *ybins)
139  :TH1(name,title,nbinsx,xbins)
140 {
141  fDimension = 2;
142  fScalefactor = 1;
143  fTsumwy = fTsumwy2 = fTsumwxy = 0;
144  if (nbinsy <= 0) {Warning("TH2","nbinsy is <=0 - set to nbinsy = 1"); nbinsy = 1; }
145  if (ybins) fYaxis.Set(nbinsy,ybins);
146  else fYaxis.Set(nbinsy,0,1);
147  fNcells = fNcells*(nbinsy+2); // fNCells is set in the TH1 constructor.
148 }
149 
150 
151 ////////////////////////////////////////////////////////////////////////////////
152 /// Copy constructor.
153 /// The list of functions is not copied. (Use Clone if needed)
154 
155 TH2::TH2(const TH2 &h) : TH1()
156 {
157  ((TH2&)h).Copy(*this);
158 }
159 
160 
161 ////////////////////////////////////////////////////////////////////////////////
162 /// Destructor.
163 
165 {
166 }
167 
168 
169 ////////////////////////////////////////////////////////////////////////////////
170 /// Fill histogram with all entries in the buffer.
171 /// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
172 /// - action = 0 histogram is filled from the buffer
173 /// - action = 1 histogram is filled and buffer is deleted
174 /// The buffer is automatically deleted when the number of entries
175 /// in the buffer is greater than the number of entries in the histogram
176 
178 {
179  // do we need to compute the bin size?
180  if (!fBuffer) return 0;
181  Int_t nbentries = (Int_t)fBuffer[0];
182 
183  // nbentries correspond to the number of entries of histogram
184 
185  if (nbentries == 0) return 0;
186  if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
187 
188  Double_t *buffer = fBuffer;
189  if (nbentries < 0) {
190  nbentries = -nbentries;
191  // a reset might call BufferEmpty() giving an infinite loop
192  // Protect it by setting fBuffer = 0
193  fBuffer=0;
194  //do not reset the list of functions
195  Reset("ICES");
196  fBuffer = buffer;
197  }
198 
200  //find min, max of entries in buffer
201  Double_t xmin = fBuffer[2];
202  Double_t xmax = xmin;
203  Double_t ymin = fBuffer[3];
204  Double_t ymax = ymin;
205  for (Int_t i=1;i<nbentries;i++) {
206  Double_t x = fBuffer[3*i+2];
207  if (x < xmin) xmin = x;
208  if (x > xmax) xmax = x;
209  Double_t y = fBuffer[3*i+3];
210  if (y < ymin) ymin = y;
211  if (y > ymax) ymax = y;
212  }
213  if (fXaxis.GetXmax() <= fXaxis.GetXmin() || fYaxis.GetXmax() <= fYaxis.GetXmin()) {
214  THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this,xmin,xmax,ymin,ymax);
215  } else {
216  fBuffer = 0;
217  Int_t keep = fBufferSize; fBufferSize = 0;
218  if (xmin < fXaxis.GetXmin()) ExtendAxis(xmin,&fXaxis);
219  if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax,&fXaxis);
220  if (ymin < fYaxis.GetXmin()) ExtendAxis(ymin,&fYaxis);
221  if (ymax >= fYaxis.GetXmax()) ExtendAxis(ymax,&fYaxis);
222  fBuffer = buffer;
223  fBufferSize = keep;
224  }
225  }
226 
227  fBuffer = 0;
228  for (Int_t i=0;i<nbentries;i++) {
229  Fill(buffer[3*i+2],buffer[3*i+3],buffer[3*i+1]);
230  }
231  fBuffer = buffer;
232 
233  if (action > 0) { delete [] fBuffer; fBuffer = 0; fBufferSize = 0;}
234  else {
235  if (nbentries == (Int_t)fEntries) fBuffer[0] = -nbentries;
236  else fBuffer[0] = 0;
237  }
238  return nbentries;
239 }
240 
241 
242 ////////////////////////////////////////////////////////////////////////////////
243 /// accumulate arguments in buffer. When buffer is full, empty the buffer
244 /// ~~~ {.cpp}
245 /// fBuffer[0] = number of entries in buffer
246 /// fBuffer[1] = w of first entry
247 /// fBuffer[2] = x of first entry
248 /// fBuffer[3] = y of first entry
249 /// ~~~
250 
252 {
253  if (!fBuffer) return -3;
254  Int_t nbentries = (Int_t)fBuffer[0];
255  if (nbentries < 0) {
256  nbentries = -nbentries;
257  fBuffer[0] = nbentries;
258  if (fEntries > 0) {
259  Double_t *buffer = fBuffer; fBuffer=0;
260  Reset("ICES");
261  fBuffer = buffer;
262  }
263  }
264  if (3*nbentries+3 >= fBufferSize) {
265  BufferEmpty(1);
266  return Fill(x,y,w);
267  }
268  fBuffer[3*nbentries+1] = w;
269  fBuffer[3*nbentries+2] = x;
270  fBuffer[3*nbentries+3] = y;
271  fBuffer[0] += 1;
272  return -3;
273 }
274 
275 
276 ////////////////////////////////////////////////////////////////////////////////
277 /// Copy.
278 
279 void TH2::Copy(TObject &obj) const
280 {
281  TH1::Copy(obj);
282  ((TH2&)obj).fScalefactor = fScalefactor;
283  ((TH2&)obj).fTsumwy = fTsumwy;
284  ((TH2&)obj).fTsumwy2 = fTsumwy2;
285  ((TH2&)obj).fTsumwxy = fTsumwxy;
286 }
287 
288 
289 ////////////////////////////////////////////////////////////////////////////////
290 /// Invalid Fill method.
291 
293 {
294  Error("Fill", "Invalid signature - do nothing");
295  return -1;
296 }
297 
298 
299 ////////////////////////////////////////////////////////////////////////////////
300 /// Increment cell defined by x,y by 1.
301 ///
302 /// - if x or/and y is less than the low-edge of the corresponding axis first bin,
303 /// the Underflow cell is incremented.
304 /// - if x or/and y is greater than the upper edge of corresponding axis last bin,
305 /// the Overflow cell is incremented.
306 ///
307 /// - If the storage of the sum of squares of weights has been triggered,
308 /// via the function Sumw2, then the sum of the squares of weights is incremented
309 /// by 1 in the cell corresponding to x,y.
310 ///
311 /// The function returns the corresponding global bin number which has its content
312 /// incremented by 1
313 
315 {
316  if (fBuffer) return BufferFill(x,y,1);
317 
318  Int_t binx, biny, bin;
319  fEntries++;
320  binx = fXaxis.FindBin(x);
321  biny = fYaxis.FindBin(y);
322  if (binx <0 || biny <0) return -1;
323  bin = biny*(fXaxis.GetNbins()+2) + binx;
324  AddBinContent(bin);
325  if (fSumw2.fN) ++fSumw2.fArray[bin];
326  if (binx == 0 || binx > fXaxis.GetNbins()) {
327  if (!GetStatOverflowsBehaviour()) return -1;
328  }
329  if (biny == 0 || biny > fYaxis.GetNbins()) {
330  if (!GetStatOverflowsBehaviour()) return -1;
331  }
332  ++fTsumw;
333  ++fTsumw2;
334  fTsumwx += x;
335  fTsumwx2 += x*x;
336  fTsumwy += y;
337  fTsumwy2 += y*y;
338  fTsumwxy += x*y;
339  return bin;
340 }
341 
342 
343 ////////////////////////////////////////////////////////////////////////////////
344 /// Increment cell defined by x,y by a weight w.
345 ///
346 /// - if x or/and y is less than the low-edge of the corresponding axis first bin,
347 /// the Underflow cell is incremented.
348 /// - if x or/and y is greater than the upper edge of corresponding axis last bin,
349 /// the Overflow cell is incremented.
350 ///
351 /// - If the weight is not equal to 1, the storage of the sum of squares of
352 /// weights is automatically triggered and the sum of the squares of weights is incremented
353 /// by w^2 in the bin corresponding to x,y
354 ///
355 /// The function returns the corresponding global bin number which has its content
356 /// incremented by w
357 
359 {
360  if (fBuffer) return BufferFill(x,y,w);
361 
362  Int_t binx, biny, bin;
363  fEntries++;
364  binx = fXaxis.FindBin(x);
365  biny = fYaxis.FindBin(y);
366  if (binx <0 || biny <0) return -1;
367  bin = biny*(fXaxis.GetNbins()+2) + binx;
368  if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
369  if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
370  AddBinContent(bin,w);
371  if (binx == 0 || binx > fXaxis.GetNbins()) {
372  if (!GetStatOverflowsBehaviour()) return -1;
373  }
374  if (biny == 0 || biny > fYaxis.GetNbins()) {
375  if (!GetStatOverflowsBehaviour()) return -1;
376  }
377  Double_t z= w;
378  fTsumw += z;
379  fTsumw2 += z*z;
380  fTsumwx += z*x;
381  fTsumwx2 += z*x*x;
382  fTsumwy += z*y;
383  fTsumwy2 += z*y*y;
384  fTsumwxy += z*x*y;
385  return bin;
386 }
387 
388 
389 ////////////////////////////////////////////////////////////////////////////////
390 /// Increment cell defined by namex,namey by a weight w
391 ///
392 /// - if x or/and y is less than the low-edge of the corresponding axis first bin,
393 /// the Underflow cell is incremented.
394 /// - if x or/and y is greater than the upper edge of corresponding axis last bin,
395 /// the Overflow cell is incremented.
396 ///
397 /// - If the weight is not equal to 1, the storage of the sum of squares of
398 /// weights is automatically triggered and the sum of the squares of weights is incremented
399 /// by w^2 in the bin corresponding to namex,namey
400 ///
401 /// The function returns the corresponding global bin number which has its content
402 /// incremented by w
403 
404 Int_t TH2::Fill(const char *namex, const char *namey, Double_t w)
405 {
406  Int_t binx, biny, bin;
407  fEntries++;
408  binx = fXaxis.FindBin(namex);
409  biny = fYaxis.FindBin(namey);
410  if (binx <0 || biny <0) return -1;
411  bin = biny*(fXaxis.GetNbins()+2) + binx;
412  if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
413  if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
414  AddBinContent(bin,w);
415  if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
416  if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
417  Double_t x = fXaxis.GetBinCenter(binx);
418  Double_t y = fYaxis.GetBinCenter(biny);
419  Double_t z= w;
420  fTsumw += z;
421  fTsumw2 += z*z;
422  fTsumwx += z*x;
423  fTsumwx2 += z*x*x;
424  fTsumwy += z*y;
425  fTsumwy2 += z*y*y;
426  fTsumwxy += z*x*y;
427  return bin;
428 }
429 
430 
431 ////////////////////////////////////////////////////////////////////////////////
432 /// Increment cell defined by namex,y by a weight w
433 ///
434 /// - if x or/and y is less than the low-edge of the corresponding axis first bin,
435 /// the Underflow cell is incremented.
436 /// - if x or/and y is greater than the upper edge of corresponding axis last bin,
437 /// the Overflow cell is incremented.
438 ///
439 /// - If the weight is not equal to 1, the storage of the sum of squares of
440 /// weights is automatically triggered and the sum of the squares of weights is incremented
441 /// by w^2 in the bin corresponding to namex,y
442 ///
443 /// The function returns the corresponding global bin number which has its content
444 /// incremented by w
445 
446 Int_t TH2::Fill(const char *namex, Double_t y, Double_t w)
447 {
448  Int_t binx, biny, bin;
449  fEntries++;
450  binx = fXaxis.FindBin(namex);
451  biny = fYaxis.FindBin(y);
452  if (binx <0 || biny <0) return -1;
453  bin = biny*(fXaxis.GetNbins()+2) + binx;
454  if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
455  if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
456  AddBinContent(bin,w);
457  if (binx == 0 || binx > fXaxis.GetNbins()) return -1;
458  if (biny == 0 || biny > fYaxis.GetNbins()) {
459  if (!GetStatOverflowsBehaviour()) return -1;
460  }
461  Double_t x = fXaxis.GetBinCenter(binx);
462  Double_t z= w; //(w > 0 ? w : -w);
463  fTsumw += z;
464  fTsumw2 += z*z;
465  fTsumwx += z*x;
466  fTsumwx2 += z*x*x;
467  fTsumwy += z*y;
468  fTsumwy2 += z*y*y;
469  fTsumwxy += z*x*y;
470  return bin;
471 }
472 
473 
474 ////////////////////////////////////////////////////////////////////////////////
475 /// Increment cell defined by x,namey by a weight w
476 ///
477 /// - if x or/and y is less than the low-edge of the corresponding axis first bin,
478 /// the Underflow cell is incremented.
479 /// - if x or/and y is greater than the upper edge of corresponding axis last bin,
480 /// the Overflow cell is incremented.
481 ///
482 /// - If the weight is not equal to 1, the storage of the sum of squares of
483 /// weights is automatically triggered and the sum of the squares of weights is incremented
484 /// by w^2 in the bin corresponding to x,y.
485 ///
486 /// The function returns the corresponding global bin number which has its content
487 /// incremented by w
488 
489 Int_t TH2::Fill(Double_t x, const char *namey, Double_t w)
490 {
491  Int_t binx, biny, bin;
492  fEntries++;
493  binx = fXaxis.FindBin(x);
494  biny = fYaxis.FindBin(namey);
495  if (binx <0 || biny <0) return -1;
496  bin = biny*(fXaxis.GetNbins()+2) + binx;
497  if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before AddBinContent
498  if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
499  AddBinContent(bin,w);
500  if (binx == 0 || binx > fXaxis.GetNbins()) {
501  if (!GetStatOverflowsBehaviour()) return -1;
502  }
503  if (biny == 0 || biny > fYaxis.GetNbins()) return -1;
504  Double_t y = fYaxis.GetBinCenter(biny);
505  Double_t z= w; //(w > 0 ? w : -w);
506  fTsumw += z;
507  fTsumw2 += z*z;
508  fTsumwx += z*x;
509  fTsumwx2 += z*x*x;
510  fTsumwy += z*y;
511  fTsumwy2 += z*y*y;
512  fTsumwxy += z*x*y;
513  return bin;
514 }
515 
516 
517 ////////////////////////////////////////////////////////////////////////////////
518 /// Fill a 2-D histogram with an array of values and weights.
519 ///
520 /// - ntimes: number of entries in arrays x and w (array size must be ntimes*stride)
521 /// - x: array of x values to be histogrammed
522 /// - y: array of y values to be histogrammed
523 /// - w: array of weights
524 /// - stride: step size through arrays x, y and w
525 ///
526 /// - If the weight is not equal to 1, the storage of the sum of squares of
527 /// weights is automatically triggered and the sum of the squares of weights is incremented
528 /// by w[i]^2 in the bin corresponding to x[i],y[i].
529 /// - If w is NULL each entry is assumed a weight=1
530 ///
531 /// NB: function only valid for a TH2x object
532 
533 void TH2::FillN(Int_t ntimes, const Double_t *x, const Double_t *y, const Double_t *w, Int_t stride)
534 {
535  Int_t binx, biny, bin, i;
536  ntimes *= stride;
537  Int_t ifirst = 0;
538 
539  //If a buffer is activated, fill buffer
540  // (note that this function must not be called from TH2::BufferEmpty)
541  if (fBuffer) {
542  for (i=0;i<ntimes;i+=stride) {
543  if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
544  if (w) BufferFill(x[i],y[i],w[i]);
545  else BufferFill(x[i], y[i], 1.);
546  }
547  // fill the remaining entries if the buffer has been deleted
548  if (i < ntimes && fBuffer==0)
549  ifirst = i;
550  else
551  return;
552  }
553 
554  Double_t ww = 1;
555  for (i=ifirst;i<ntimes;i+=stride) {
556  fEntries++;
557  binx = fXaxis.FindBin(x[i]);
558  biny = fYaxis.FindBin(y[i]);
559  if (binx <0 || biny <0) continue;
560  bin = biny*(fXaxis.GetNbins()+2) + binx;
561  if (w) ww = w[i];
562  if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
563  if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
564  AddBinContent(bin,ww);
565  if (binx == 0 || binx > fXaxis.GetNbins()) {
566  if (!GetStatOverflowsBehaviour()) continue;
567  }
568  if (biny == 0 || biny > fYaxis.GetNbins()) {
569  if (!GetStatOverflowsBehaviour()) continue;
570  }
571  Double_t z= ww; //(ww > 0 ? ww : -ww);
572  fTsumw += z;
573  fTsumw2 += z*z;
574  fTsumwx += z*x[i];
575  fTsumwx2 += z*x[i]*x[i];
576  fTsumwy += z*y[i];
577  fTsumwy2 += z*y[i]*y[i];
578  fTsumwxy += z*x[i]*y[i];
579  }
580 }
581 
582 
583 ////////////////////////////////////////////////////////////////////////////////
584 /// Fill histogram following distribution in function fname.
585 ///
586 /// The distribution contained in the function fname (TF2) is integrated
587 /// over the channel contents.
588 /// It is normalized to 1.
589 /// Getting one random number implies:
590 /// - Generating a random number between 0 and 1 (say r1)
591 /// - Look in which bin in the normalized integral r1 corresponds to
592 /// - Fill histogram channel
593 /// ntimes random numbers are generated
594 ///
595 /// One can also call TF2::GetRandom2 to get a random variate from a function.
596 
597 void TH2::FillRandom(const char *fname, Int_t ntimes)
598 {
599  Int_t bin, binx, biny, ibin, loop;
600  Double_t r1, x, y;
601  //*-*- Search for fname in the list of ROOT defined functions
602  TObject *fobj = gROOT->GetFunction(fname);
603  if (!fobj) { Error("FillRandom", "Unknown function: %s",fname); return; }
604  TF2 * f1 = dynamic_cast<TF2*>(fobj);
605  if (!f1) { Error("FillRandom", "Function: %s is not a TF2, is a %s",fname,fobj->IsA()->GetName()); return; }
606 
607 
608  TAxis & xAxis = fXaxis;
609  TAxis & yAxis = fYaxis;
610 
611  // in case axes of histogram are not defined use the function axis
612  if (fXaxis.GetXmax() <= fXaxis.GetXmin() || fYaxis.GetXmax() <= fYaxis.GetXmin()) {
614  f1->GetRange(xmin,ymin,xmax,ymax);
615  Info("FillRandom","Using function axis and range ([%g,%g],[%g,%g])",xmin, xmax,ymin,ymax);
616  xAxis = *(f1->GetHistogram()->GetXaxis());
617  yAxis = *(f1->GetHistogram()->GetYaxis());
618  }
619 
620 
621  // Allocate temporary space to store the integral and compute integral
622  Int_t nbinsx = xAxis.GetNbins();
623  Int_t nbinsy = yAxis.GetNbins();
624  Int_t nbins = nbinsx*nbinsy;
625 
626 
627  Double_t *integral = new Double_t[nbins+1];
628  ibin = 0;
629  integral[ibin] = 0;
630  for (biny=1;biny<=nbinsy;biny++) {
631  for (binx=1;binx<=nbinsx;binx++) {
632  ibin++;
633  Double_t fint = f1->Integral(xAxis.GetBinLowEdge(binx), xAxis.GetBinUpEdge(binx), yAxis.GetBinLowEdge(biny), yAxis.GetBinUpEdge(biny));
634  integral[ibin] = integral[ibin-1] + fint;
635  }
636  }
637 
638  // Normalize integral to 1
639  if (integral[nbins] == 0 ) {
640  delete [] integral;
641  Error("FillRandom", "Integral = zero"); return;
642  }
643  for (bin=1;bin<=nbins;bin++) integral[bin] /= integral[nbins];
644 
645  // Start main loop ntimes
646  for (loop=0;loop<ntimes;loop++) {
647  r1 = gRandom->Rndm();
648  ibin = TMath::BinarySearch(nbins,&integral[0],r1);
649  biny = ibin/nbinsx;
650  binx = 1 + ibin - nbinsx*biny;
651  biny++;
652  x = xAxis.GetBinCenter(binx);
653  y = yAxis.GetBinCenter(biny);
654  Fill(x,y);
655  }
656  delete [] integral;
657 }
658 
659 
660 ////////////////////////////////////////////////////////////////////////////////
661 /// Fill histogram following distribution in histogram h.
662 ///
663 /// The distribution contained in the histogram h (TH2) is integrated
664 /// over the channel contents.
665 /// It is normalized to 1.
666 /// Getting one random number implies:
667 /// - Generating a random number between 0 and 1 (say r1)
668 /// - Look in which bin in the normalized integral r1 corresponds to
669 /// - Fill histogram channel
670 /// ntimes random numbers are generated
671 
672 void TH2::FillRandom(TH1 *h, Int_t ntimes)
673 {
674  if (!h) { Error("FillRandom", "Null histogram"); return; }
675  if (fDimension != h->GetDimension()) {
676  Error("FillRandom", "Histograms with different dimensions"); return;
677  }
678 
679  if (h->ComputeIntegral() == 0) return;
680 
681  Int_t loop;
682  Double_t x,y;
683  TH2 *h2 = (TH2*)h;
684  for (loop=0;loop<ntimes;loop++) {
685  h2->GetRandom2(x,y);
686  Fill(x,y);
687  }
688 }
689 
690 
691 ////////////////////////////////////////////////////////////////////////////////
692 /// Find first bin with content > threshold for axis (1=x, 2=y, 3=z)
693 /// if no bins with content > threshold is found the function returns -1.
694 
696 {
697  if (axis < 1 || axis > 2) {
698  Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
699  axis = 1;
700  }
701  Int_t nbinsx = fXaxis.GetNbins();
702  Int_t nbinsy = fYaxis.GetNbins();
703  Int_t binx, biny;
704  if (axis == 1) {
705  for (binx=1;binx<=nbinsx;binx++) {
706  for (biny=1;biny<=nbinsy;biny++) {
707  if (GetBinContent(binx,biny) > threshold) return binx;
708  }
709  }
710  } else {
711  for (biny=1;biny<=nbinsy;biny++) {
712  for (binx=1;binx<=nbinsx;binx++) {
713  if (GetBinContent(binx,biny) > threshold) return biny;
714  }
715  }
716  }
717  return -1;
718 }
719 
720 
721 ////////////////////////////////////////////////////////////////////////////////
722 /// Find last bin with content > threshold for axis (1=x, 2=y, 3=z)
723 /// if no bins with content > threshold is found the function returns -1.
724 
726 {
727  if (axis < 1 || axis > 2) {
728  Warning("FindLastBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
729  axis = 1;
730  }
731  Int_t nbinsx = fXaxis.GetNbins();
732  Int_t nbinsy = fYaxis.GetNbins();
733  Int_t binx, biny;
734  if (axis == 1) {
735  for (binx=nbinsx;binx>=1;binx--) {
736  for (biny=1;biny<=nbinsy;biny++) {
737  if (GetBinContent(binx,biny) > threshold) return binx;
738  }
739  }
740  } else {
741  for (biny=nbinsy;biny>=1;biny--) {
742  for (binx=1;binx<=nbinsx;binx++) {
743  if (GetBinContent(binx,biny) > threshold) return biny;
744  }
745  }
746  }
747  return -1;
748 }
749 
750 
751 ////////////////////////////////////////////////////////////////////////////////
752 
753 void TH2::DoFitSlices(bool onX,
754  TF1 *f1, Int_t firstbin, Int_t lastbin, Int_t cut, Option_t *option, TObjArray* arr)
755 {
756  TAxis& outerAxis = (onX ? fYaxis : fXaxis);
757  TAxis& innerAxis = (onX ? fXaxis : fYaxis);
758 
759  Int_t nbins = outerAxis.GetNbins();
760  if (firstbin < 0) firstbin = 0;
761  if (lastbin < 0 || lastbin > nbins + 1) lastbin = nbins + 1;
762  if (lastbin < firstbin) {firstbin = 0; lastbin = nbins + 1;}
763  TString opt = option;
764  opt.ToLower();
765  Int_t ngroup = 1;
766  if (opt.Contains("g2")) {ngroup = 2; opt.ReplaceAll("g2","");}
767  if (opt.Contains("g3")) {ngroup = 3; opt.ReplaceAll("g3","");}
768  if (opt.Contains("g4")) {ngroup = 4; opt.ReplaceAll("g4","");}
769  if (opt.Contains("g5")) {ngroup = 5; opt.ReplaceAll("g5","");}
770 
771  // implement option S sliding merge for each bin using in conjunction with a given Gn
772  Int_t nstep = ngroup;
773  if (opt.Contains("s")) nstep = 1;
774 
775  //default is to fit with a gaussian
776  if (f1 == 0) {
777  f1 = (TF1*)gROOT->GetFunction("gaus");
778  if (f1 == 0) f1 = new TF1("gaus","gaus",innerAxis.GetXmin(),innerAxis.GetXmax());
779  else f1->SetRange(innerAxis.GetXmin(),innerAxis.GetXmax());
780  }
781  Int_t npar = f1->GetNpar();
782  if (npar <= 0) return;
783  Double_t *parsave = new Double_t[npar];
784  f1->GetParameters(parsave);
785 
786  if (arr) {
787  arr->SetOwner();
788  arr->Expand(npar + 1);
789  }
790 
791  //Create one histogram for each function parameter
792  Int_t ipar;
793  TH1D **hlist = new TH1D*[npar];
794  char *name = new char[2000];
795  char *title = new char[2000];
796  const TArrayD *bins = outerAxis.GetXbins();
797  for (ipar=0;ipar<npar;ipar++) {
798  snprintf(name,2000,"%s_%d",GetName(),ipar);
799  snprintf(title,2000,"Fitted value of par[%d]=%s",ipar,f1->GetParName(ipar));
800  delete gDirectory->FindObject(name);
801  if (bins->fN == 0) {
802  hlist[ipar] = new TH1D(name,title, nbins, outerAxis.GetXmin(), outerAxis.GetXmax());
803  } else {
804  hlist[ipar] = new TH1D(name,title, nbins,bins->fArray);
805  }
806  hlist[ipar]->GetXaxis()->SetTitle(outerAxis.GetTitle());
807  if (arr)
808  (*arr)[ipar] = hlist[ipar];
809  }
810  snprintf(name,2000,"%s_chi2",GetName());
811  delete gDirectory->FindObject(name);
812  TH1D *hchi2 = 0;
813  if (bins->fN == 0) {
814  hchi2 = new TH1D(name,"chisquare", nbins, outerAxis.GetXmin(), outerAxis.GetXmax());
815  } else {
816  hchi2 = new TH1D(name,"chisquare", nbins, bins->fArray);
817  }
818  hchi2->GetXaxis()->SetTitle(outerAxis.GetTitle());
819  if (arr)
820  (*arr)[npar] = hchi2;
821 
822  //Loop on all bins in Y, generate a projection along X
823  Int_t bin;
825  // in case of sliding merge nstep=1, i.e. do slices starting for every bin
826  // now do not slices case with overflow (makes more sense)
827  for (bin=firstbin;bin+ngroup-1<=lastbin;bin += nstep) {
828  TH1D *hp;
829  if (onX)
830  hp= ProjectionX("_temp",bin,bin+ngroup-1,"e");
831  else
832  hp= ProjectionY("_temp",bin,bin+ngroup-1,"e");
833  if (hp == 0) continue;
834  nentries = Long64_t(hp->GetEntries());
835  if (nentries == 0 || nentries < cut) {delete hp; continue;}
836  f1->SetParameters(parsave);
837  hp->Fit(f1,opt.Data());
838  Int_t npfits = f1->GetNumberFitPoints();
839  if (npfits > npar && npfits >= cut) {
840  Int_t binOn = bin + ngroup/2;
841  for (ipar=0;ipar<npar;ipar++) {
842  hlist[ipar]->Fill(outerAxis.GetBinCenter(binOn),f1->GetParameter(ipar));
843  hlist[ipar]->SetBinError(binOn,f1->GetParError(ipar));
844  }
845  hchi2->SetBinContent(binOn,f1->GetChisquare()/(npfits-npar));
846  }
847  delete hp;
848  }
849  delete [] parsave;
850  delete [] name;
851  delete [] title;
852  delete [] hlist;
853 }
854 
855 
856 ////////////////////////////////////////////////////////////////////////////////
857 /// Project slices along X in case of a 2-D histogram, then fit each slice
858 /// with function f1 and make a histogram for each fit parameter
859 /// Only bins along Y between firstybin and lastybin are considered.
860 /// By default (firstybin == 0, lastybin == -1), all bins in y including
861 /// over- and underflows are taken into account.
862 /// If f1=0, a gaussian is assumed
863 /// Before invoking this function, one can set a subrange to be fitted along X
864 /// via f1->SetRange(xmin,xmax)
865 /// The argument option (default="QNR") can be used to change the fit options.
866 /// - "Q" means Quiet mode
867 /// - "N" means do not show the result of the fit
868 /// - "R" means fit the function in the specified function range
869 /// - "G2" merge 2 consecutive bins along X
870 /// - "G3" merge 3 consecutive bins along X
871 /// - "G4" merge 4 consecutive bins along X
872 /// - "G5" merge 5 consecutive bins along X
873 /// - "S" sliding merge: merge n consecutive bins along X accordingly to what Gn is given.
874 /// It makes sense when used together with a Gn option
875 ///
876 /// The generated histograms are returned by adding them to arr, if arr is not NULL.
877 /// arr's SetOwner() is called, to signal that it is the user's responsibility to
878 /// delete the histograms, possibly by deleting the array.
879 /// ~~~ {.cpp}
880 /// TObjArray aSlices;
881 /// h2->FitSlicesX(func, 0, -1, 0, "QNR", &aSlices);
882 /// ~~~
883 /// will already delete the histograms once aSlice goes out of scope. aSlices will
884 /// contain the histogram for the i-th parameter of the fit function at aSlices[i];
885 /// aSlices[n] (n being the number of parameters) contains the chi2 distribution of
886 /// the fits.
887 ///
888 /// If arr is NULL, the generated histograms are added to the list of objects
889 /// in the current directory. It is the user's responsibility to delete
890 /// these histograms.
891 ///
892 /// Example: Assume a 2-d histogram h2
893 /// ~~~ {.cpp}
894 /// Root > h2->FitSlicesX(); produces 4 TH1D histograms
895 /// with h2_0 containing parameter 0(Constant) for a Gaus fit
896 /// of each bin in Y projected along X
897 /// with h2_1 containing parameter 1(Mean) for a gaus fit
898 /// with h2_2 containing parameter 2(StdDev) for a gaus fit
899 /// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
900 ///
901 /// Root > h2->FitSlicesX(0,15,22,10);
902 /// same as above, but only for bins 15 to 22 along Y
903 /// and only for bins in Y for which the corresponding projection
904 /// along X has more than cut bins filled.
905 /// ~~~
906 /// NOTE: To access the generated histograms in the current directory, do eg:
907 /// ~~~ {.cpp}
908 /// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
909 /// ~~~
910 
911 void TH2::FitSlicesX(TF1 *f1, Int_t firstybin, Int_t lastybin, Int_t cut, Option_t *option, TObjArray* arr)
912 {
913  DoFitSlices(true, f1, firstybin, lastybin, cut, option, arr);
914 
915 }
916 
917 
918 ////////////////////////////////////////////////////////////////////////////////
919 /// Project slices along Y in case of a 2-D histogram, then fit each slice
920 /// with function f1 and make a histogram for each fit parameter
921 /// Only bins along X between firstxbin and lastxbin are considered.
922 /// By default (firstxbin == 0, lastxbin == -1), all bins in x including
923 /// over- and underflows are taken into account.
924 /// If f1=0, a gaussian is assumed
925 /// Before invoking this function, one can set a subrange to be fitted along Y
926 /// via f1->SetRange(ymin,ymax)
927 /// The argument option (default="QNR") can be used to change the fit options.
928 /// - "Q" means Quiet mode
929 /// - "N" means do not show the result of the fit
930 /// - "R" means fit the function in the specified function range
931 /// - "G2" merge 2 consecutive bins along Y
932 /// - "G3" merge 3 consecutive bins along Y
933 /// - "G4" merge 4 consecutive bins along Y
934 /// - "G5" merge 5 consecutive bins along Y
935 /// - "S" sliding merge: merge n consecutive bins along Y accordingly to what Gn is given.
936 /// It makes sense when used together with a Gn option
937 ///
938 /// The generated histograms are returned by adding them to arr, if arr is not NULL.
939 /// arr's SetOwner() is called, to signal that it is the user's responsibility to
940 /// delete the histograms, possibly by deleting the array.
941 /// ~~~ {.cpp}
942 /// TObjArray aSlices;
943 /// h2->FitSlicesY(func, 0, -1, 0, "QNR", &aSlices);
944 /// ~~~
945 /// will already delete the histograms once aSlice goes out of scope. aSlices will
946 /// contain the histogram for the i-th parameter of the fit function at aSlices[i];
947 /// aSlices[n] (n being the number of parameters) contains the chi2 distribution of
948 /// the fits.
949 ///
950 /// If arr is NULL, the generated histograms are added to the list of objects
951 /// in the current directory. It is the user's responsibility to delete
952 /// these histograms.
953 ///
954 /// Example: Assume a 2-d histogram h2
955 /// ~~~ {.cpp}
956 /// Root > h2->FitSlicesY(); produces 4 TH1D histograms
957 /// with h2_0 containing parameter 0(Constant) for a Gaus fit
958 /// of each bin in X projected along Y
959 /// with h2_1 containing parameter 1(Mean) for a gaus fit
960 /// with h2_2 containing parameter 2(StdDev) for a gaus fit
961 /// with h2_chi2 containing the chisquare/number of degrees of freedom for a gaus fit
962 ///
963 /// Root > h2->FitSlicesY(0,15,22,10);
964 /// same as above, but only for bins 15 to 22 along X
965 /// and only for bins in X for which the corresponding projection
966 /// along Y has more than cut bins filled.
967 /// ~~~
968 ///
969 /// NOTE: To access the generated histograms in the current directory, do eg:
970 /// ~~~ {.cpp}
971 /// TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
972 /// ~~~
973 ///
974 /// A complete example of this function is given in tutorial:fitslicesy.C.
975 
976 void TH2::FitSlicesY(TF1 *f1, Int_t firstxbin, Int_t lastxbin, Int_t cut, Option_t *option, TObjArray* arr)
977 {
978  DoFitSlices(false, f1, firstxbin, lastxbin, cut, option, arr);
979 }
980 
981 Int_t TH2::GetBin(Int_t binx, Int_t biny, Int_t) const
982 {
983  // See comments in TH1::GetBin
984  Int_t ofy = fYaxis.GetNbins() + 1; // overflow bin
985  if (biny < 0) biny = 0;
986  if (biny > ofy) biny = ofy;
987 
988  return TH1::GetBin(binx) + (fXaxis.GetNbins() + 2) * biny;
989 }
990 
991 
992 ////////////////////////////////////////////////////////////////////////////////
993 /// compute first cell (binx,biny) in the range [firstxbin,lastxbin][firstybin,lastybin] for which
994 /// diff = abs(cell_content-c) <= maxdiff
995 /// In case several cells in the specified range with diff=0 are found
996 /// the first cell found is returned in binx,biny.
997 /// In case several cells in the specified range satisfy diff <=maxdiff
998 /// the cell with the smallest difference is returned in binx,biny.
999 /// In all cases the function returns the smallest difference.
1000 ///
1001 /// NOTE1: if firstxbin < 0, firstxbin is set to 1
1002 /// if (lastxbin < firstxbin then lastxbin is set to the number of bins in X
1003 /// ie if firstxbin=1 and lastxbin=0 (default) the search is on all bins in X except
1004 /// for X's under- and overflow bins.
1005 /// if firstybin < 0, firstybin is set to 1
1006 /// if (lastybin < firstybin then lastybin is set to the number of bins in Y
1007 /// ie if firstybin=1 and lastybin=0 (default) the search is on all bins in Y except
1008 /// for Y's under- and overflow bins.
1009 ///
1010 /// NOTE2: if maxdiff=0 (default), the first cell with content=c is returned.
1011 
1012 Double_t TH2::GetBinWithContent2(Double_t c, Int_t &binx, Int_t &biny, Int_t firstxbin, Int_t lastxbin,
1013  Int_t firstybin, Int_t lastybin, Double_t maxdiff) const
1014 {
1015  if (fDimension != 2) {
1016  binx = -1;
1017  biny = -1;
1018  Error("GetBinWithContent2","function is only valid for 2-D histograms");
1019  return 0;
1020  }
1021  if (firstxbin < 0) firstxbin = 1;
1022  if (lastxbin < firstxbin) lastxbin = fXaxis.GetNbins();
1023  if (firstybin < 0) firstybin = 1;
1024  if (lastybin < firstybin) lastybin = fYaxis.GetNbins();
1025  Double_t diff, curmax = 1.e240;
1026  for (Int_t j = firstybin; j <= lastybin; j++) {
1027  for (Int_t i = firstxbin; i <= lastxbin; i++) {
1028  diff = TMath::Abs(GetBinContent(i,j)-c);
1029  if (diff <= 0) {binx = i; biny=j; return diff;}
1030  if (diff < curmax && diff <= maxdiff) {curmax = diff, binx=i; biny=j;}
1031  }
1032  }
1033  return curmax;
1034 }
1035 
1036 
1037 ////////////////////////////////////////////////////////////////////////////////
1038 /// Return correlation factor between axis1 and axis2.
1039 
1041 {
1042  if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
1043  Error("GetCorrelationFactor","Wrong parameters");
1044  return 0;
1045  }
1046  if (axis1 == axis2) return 1;
1047  Double_t stddev1 = GetStdDev(axis1);
1048  if (stddev1 == 0) return 0;
1049  Double_t stddev2 = GetStdDev(axis2);
1050  if (stddev2 == 0) return 0;
1051  return GetCovariance(axis1,axis2)/stddev1/stddev2;
1052 }
1053 
1054 
1055 ////////////////////////////////////////////////////////////////////////////////
1056 /// Return covariance between axis1 and axis2.
1057 
1059 {
1060  if (axis1 < 1 || axis2 < 1 || axis1 > 2 || axis2 > 2) {
1061  Error("GetCovariance","Wrong parameters");
1062  return 0;
1063  }
1064  Double_t stats[kNstat];
1065  GetStats(stats);
1066  Double_t sumw = stats[0];
1067  //Double_t sumw2 = stats[1];
1068  Double_t sumwx = stats[2];
1069  Double_t sumwx2 = stats[3];
1070  Double_t sumwy = stats[4];
1071  Double_t sumwy2 = stats[5];
1072  Double_t sumwxy = stats[6];
1073 
1074  if (sumw == 0) return 0;
1075  if (axis1 == 1 && axis2 == 1) {
1076  return TMath::Abs(sumwx2/sumw - sumwx/sumw*sumwx/sumw);
1077  }
1078  if (axis1 == 2 && axis2 == 2) {
1079  return TMath::Abs(sumwy2/sumw - sumwy/sumw*sumwy/sumw);
1080  }
1081  return sumwxy/sumw - sumwx/sumw*sumwy/sumw;
1082 }
1083 
1084 
1085 ////////////////////////////////////////////////////////////////////////////////
1086 /// Return 2 random numbers along axis x and y distributed according
1087 /// the cell-contents of a 2-dim histogram
1088 /// return a NaN if the histogram has a bin with negative content
1089 
1091 {
1092  Int_t nbinsx = GetNbinsX();
1093  Int_t nbinsy = GetNbinsY();
1094  Int_t nbins = nbinsx*nbinsy;
1095  Double_t integral;
1096  // compute integral checking that all bins have positive content (see ROOT-5894)
1097  if (fIntegral) {
1098  if (fIntegral[nbins+1] != fEntries) integral = ComputeIntegral(true);
1099  else integral = fIntegral[nbins];
1100  } else {
1101  integral = ComputeIntegral(true);
1102  }
1103  if (integral == 0 ) { x = 0; y = 0; return;}
1104  // case histogram has negative bins
1105  if (integral == TMath::QuietNaN() ) { x = TMath::QuietNaN(); y = TMath::QuietNaN(); return;}
1106 
1107  Double_t r1 = gRandom->Rndm();
1108  Int_t ibin = TMath::BinarySearch(nbins,fIntegral,(Double_t) r1);
1109  Int_t biny = ibin/nbinsx;
1110  Int_t binx = ibin - nbinsx*biny;
1111  x = fXaxis.GetBinLowEdge(binx+1);
1112  if (r1 > fIntegral[ibin]) x +=
1113  fXaxis.GetBinWidth(binx+1)*(r1-fIntegral[ibin])/(fIntegral[ibin+1] - fIntegral[ibin]);
1114  y = fYaxis.GetBinLowEdge(biny+1) + fYaxis.GetBinWidth(biny+1)*gRandom->Rndm();
1115 }
1116 
1117 
1118 ////////////////////////////////////////////////////////////////////////////////
1119 /// Fill the array stats from the contents of this histogram
1120 /// The array stats must be correctly dimensioned in the calling program.
1121 /// ~~~ {.cpp}
1122 /// stats[0] = sumw
1123 /// stats[1] = sumw2
1124 /// stats[2] = sumwx
1125 /// stats[3] = sumwx2
1126 /// stats[4] = sumwy
1127 /// stats[5] = sumwy2
1128 /// stats[6] = sumwxy
1129 /// ~~~
1130 ///
1131 /// If no axis-subranges are specified (via TAxis::SetRange), the array stats
1132 /// is simply a copy of the statistics quantities computed at filling time.
1133 /// If sub-ranges are specified, the function recomputes these quantities
1134 /// from the bin contents in the current axis ranges.
1135 ///
1136 /// Note that the mean value/StdDev is computed using the bins in the currently
1137 /// defined ranges (see TAxis::SetRange). By default the ranges include
1138 /// all bins from 1 to nbins included, excluding underflows and overflows.
1139 /// To force the underflows and overflows in the computation, one must
1140 /// call the static function TH1::StatOverflows(kTRUE) before filling
1141 /// the histogram.
1142 
1143 void TH2::GetStats(Double_t *stats) const
1144 {
1145  if (fBuffer) ((TH2*)this)->BufferEmpty();
1146 
1148  std::fill(stats, stats + 7, 0);
1149 
1150  Int_t firstBinX = fXaxis.GetFirst();
1151  Int_t lastBinX = fXaxis.GetLast();
1152  Int_t firstBinY = fYaxis.GetFirst();
1153  Int_t lastBinY = fYaxis.GetLast();
1154  // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
1155  if (GetStatOverflowsBehaviour()) {
1156  if ( !fXaxis.TestBit(TAxis::kAxisRange) ) {
1157  if (firstBinX == 1) firstBinX = 0;
1158  if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
1159  }
1160  if ( !fYaxis.TestBit(TAxis::kAxisRange) ) {
1161  if (firstBinY == 1) firstBinY = 0;
1162  if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
1163  }
1164  }
1165  for (Int_t biny = firstBinY; biny <= lastBinY; ++biny) {
1166  Double_t y = fYaxis.GetBinCenter(biny);
1167  for (Int_t binx = firstBinX; binx <= lastBinX; ++binx) {
1168  Double_t x = fXaxis.GetBinCenter(binx);
1169  //w = TMath::Abs(GetBinContent(bin));
1170  Int_t bin = GetBin(binx,biny);
1171  Double_t w = RetrieveBinContent(bin);
1172  Double_t wx = w * x; // avoid some extra multiplications at the expense of some clarity
1173  Double_t wy = w * y;
1174 
1175  stats[0] += w;
1176  stats[1] += GetBinErrorSqUnchecked(bin);
1177  stats[2] += wx;
1178  stats[3] += wx * x;
1179  stats[4] += wy;
1180  stats[5] += wy * y;
1181  stats[6] += wx * y;
1182  }
1183  }
1184  } else {
1185  stats[0] = fTsumw;
1186  stats[1] = fTsumw2;
1187  stats[2] = fTsumwx;
1188  stats[3] = fTsumwx2;
1189  stats[4] = fTsumwy;
1190  stats[5] = fTsumwy2;
1191  stats[6] = fTsumwxy;
1192  }
1193 }
1194 
1195 
1196 ////////////////////////////////////////////////////////////////////////////////
1197 /// Return integral of bin contents. Only bins in the bins range are considered.
1198 /// By default the integral is computed as the sum of bin contents in the range.
1199 /// if option "width" is specified, the integral is the sum of
1200 /// the bin contents multiplied by the bin width in x and in y.
1201 
1203 {
1204  return Integral(fXaxis.GetFirst(),fXaxis.GetLast(),
1205  fYaxis.GetFirst(),fYaxis.GetLast(),option);
1206 }
1207 
1208 
1209 ////////////////////////////////////////////////////////////////////////////////
1210 /// Return integral of bin contents in range [firstxbin,lastxbin],[firstybin,lastybin]
1211 /// for a 2-D histogram
1212 /// By default the integral is computed as the sum of bin contents in the range.
1213 /// if option "width" is specified, the integral is the sum of
1214 /// the bin contents multiplied by the bin width in x and in y.
1215 
1216 Double_t TH2::Integral(Int_t firstxbin, Int_t lastxbin, Int_t firstybin, Int_t lastybin, Option_t *option) const
1217 {
1218  double err = 0;
1219  return DoIntegral(firstxbin,lastxbin,firstybin,lastybin,-1,0,err,option);
1220 }
1221 
1222 
1223 ////////////////////////////////////////////////////////////////////////////////
1224 /// Return integral of bin contents in range [firstxbin,lastxbin],[firstybin,lastybin]
1225 /// for a 2-D histogram. Calculates also the integral error using error propagation
1226 /// from the bin errors assuming that all the bins are uncorrelated.
1227 /// By default the integral is computed as the sum of bin contents in the range.
1228 /// if option "width" is specified, the integral is the sum of
1229 /// the bin contents multiplied by the bin width in x and in y.
1230 
1231 Double_t TH2::IntegralAndError(Int_t firstxbin, Int_t lastxbin, Int_t firstybin, Int_t lastybin, Double_t & error, Option_t *option) const
1232 {
1233  return DoIntegral(firstxbin,lastxbin,firstybin,lastybin,-1,0,error,option,kTRUE);
1234 }
1235 
1236 
1237 ////////////////////////////////////////////////////////////////////////////////
1238 ///illegal for a TH2
1239 
1241 {
1242  Error("Interpolate","This function must be called with 2 arguments for a TH2");
1243  return 0;
1244 }
1245 
1246 
1247 ////////////////////////////////////////////////////////////////////////////////
1248 /// Given a point P(x,y), Interpolate approximates the value via bilinear
1249 /// interpolation based on the four nearest bin centers
1250 /// see Wikipedia, Bilinear Interpolation
1251 /// Andy Mastbaum 10/8/2008
1252 /// vaguely based on R.Raja 6-Sep-2008
1253 
1255 {
1256  Double_t f=0;
1257  Double_t x1=0,x2=0,y1=0,y2=0;
1258  Double_t dx,dy;
1259  Int_t bin_x = fXaxis.FindBin(x);
1260  Int_t bin_y = fYaxis.FindBin(y);
1261  if(bin_x<1 || bin_x>GetNbinsX() || bin_y<1 || bin_y>GetNbinsY()) {
1262  Error("Interpolate","Cannot interpolate outside histogram domain.");
1263  return 0;
1264  }
1265  Int_t quadrant = 0; // CCW from UR 1,2,3,4
1266  // which quadrant of the bin (bin_P) are we in?
1267  dx = fXaxis.GetBinUpEdge(bin_x)-x;
1268  dy = fYaxis.GetBinUpEdge(bin_y)-y;
1269  if (dx<=fXaxis.GetBinWidth(bin_x)/2 && dy<=fYaxis.GetBinWidth(bin_y)/2)
1270  quadrant = 1; // upper right
1271  if (dx>fXaxis.GetBinWidth(bin_x)/2 && dy<=fYaxis.GetBinWidth(bin_y)/2)
1272  quadrant = 2; // upper left
1273  if (dx>fXaxis.GetBinWidth(bin_x)/2 && dy>fYaxis.GetBinWidth(bin_y)/2)
1274  quadrant = 3; // lower left
1275  if (dx<=fXaxis.GetBinWidth(bin_x)/2 && dy>fYaxis.GetBinWidth(bin_y)/2)
1276  quadrant = 4; // lower right
1277  switch(quadrant) {
1278  case 1:
1279  x1 = fXaxis.GetBinCenter(bin_x);
1280  y1 = fYaxis.GetBinCenter(bin_y);
1281  x2 = fXaxis.GetBinCenter(bin_x+1);
1282  y2 = fYaxis.GetBinCenter(bin_y+1);
1283  break;
1284  case 2:
1285  x1 = fXaxis.GetBinCenter(bin_x-1);
1286  y1 = fYaxis.GetBinCenter(bin_y);
1287  x2 = fXaxis.GetBinCenter(bin_x);
1288  y2 = fYaxis.GetBinCenter(bin_y+1);
1289  break;
1290  case 3:
1291  x1 = fXaxis.GetBinCenter(bin_x-1);
1292  y1 = fYaxis.GetBinCenter(bin_y-1);
1293  x2 = fXaxis.GetBinCenter(bin_x);
1294  y2 = fYaxis.GetBinCenter(bin_y);
1295  break;
1296  case 4:
1297  x1 = fXaxis.GetBinCenter(bin_x);
1298  y1 = fYaxis.GetBinCenter(bin_y-1);
1299  x2 = fXaxis.GetBinCenter(bin_x+1);
1300  y2 = fYaxis.GetBinCenter(bin_y);
1301  break;
1302  }
1303  Int_t bin_x1 = fXaxis.FindBin(x1);
1304  if(bin_x1<1) bin_x1=1;
1305  Int_t bin_x2 = fXaxis.FindBin(x2);
1306  if(bin_x2>GetNbinsX()) bin_x2=GetNbinsX();
1307  Int_t bin_y1 = fYaxis.FindBin(y1);
1308  if(bin_y1<1) bin_y1=1;
1309  Int_t bin_y2 = fYaxis.FindBin(y2);
1310  if(bin_y2>GetNbinsY()) bin_y2=GetNbinsY();
1311  Int_t bin_q22 = GetBin(bin_x2,bin_y2);
1312  Int_t bin_q12 = GetBin(bin_x1,bin_y2);
1313  Int_t bin_q11 = GetBin(bin_x1,bin_y1);
1314  Int_t bin_q21 = GetBin(bin_x2,bin_y1);
1315  Double_t q11 = RetrieveBinContent(bin_q11);
1316  Double_t q12 = RetrieveBinContent(bin_q12);
1317  Double_t q21 = RetrieveBinContent(bin_q21);
1318  Double_t q22 = RetrieveBinContent(bin_q22);
1319  Double_t d = 1.0*(x2-x1)*(y2-y1);
1320  f = 1.0*q11/d*(x2-x)*(y2-y)+1.0*q21/d*(x-x1)*(y2-y)+1.0*q12/d*(x2-x)*(y-y1)+1.0*q22/d*(x-x1)*(y-y1);
1321  return f;
1322 }
1323 
1324 
1325 ////////////////////////////////////////////////////////////////////////////////
1326 ///illegal for a TH2
1327 
1329 {
1330  Error("Interpolate","This function must be called with 2 arguments for a TH2");
1331  return 0;
1332 }
1333 
1334 
1335 ////////////////////////////////////////////////////////////////////////////////
1336 /// Statistical test of compatibility in shape between
1337 /// THIS histogram and h2, using Kolmogorov test.
1338 /// Default: Ignore under- and overflow bins in comparison
1339 ///
1340 /// option is a character string to specify options
1341 /// - "U" include Underflows in test
1342 /// - "O" include Overflows
1343 /// - "N" include comparison of normalizations
1344 /// - "D" Put out a line of "Debug" printout
1345 /// - "M" Return the Maximum Kolmogorov distance instead of prob
1346 ///
1347 /// The returned function value is the probability of test
1348 /// (much less than one means NOT compatible)
1349 ///
1350 /// The KS test uses the distance between the pseudo-CDF's obtained
1351 /// from the histogram. Since in 2D the order for generating the pseudo-CDF is
1352 /// arbitrary, two pairs of pseudo-CDF are used, one starting from the x axis the
1353 /// other from the y axis and the maximum distance is the average of the two maximum
1354 /// distances obtained.
1355 ///
1356 /// Code adapted by Rene Brun from original HBOOK routine HDIFF
1357 
1358 Double_t TH2::KolmogorovTest(const TH1 *h2, Option_t *option) const
1359 {
1360  TString opt = option;
1361  opt.ToUpper();
1362 
1363  Double_t prb = 0;
1364  TH1 *h1 = (TH1*)this;
1365  if (h2 == 0) return 0;
1366  const TAxis *xaxis1 = h1->GetXaxis();
1367  const TAxis *xaxis2 = h2->GetXaxis();
1368  const TAxis *yaxis1 = h1->GetYaxis();
1369  const TAxis *yaxis2 = h2->GetYaxis();
1370  Int_t ncx1 = xaxis1->GetNbins();
1371  Int_t ncx2 = xaxis2->GetNbins();
1372  Int_t ncy1 = yaxis1->GetNbins();
1373  Int_t ncy2 = yaxis2->GetNbins();
1374 
1375  // Check consistency of dimensions
1376  if (h1->GetDimension() != 2 || h2->GetDimension() != 2) {
1377  Error("KolmogorovTest","Histograms must be 2-D\n");
1378  return 0;
1379  }
1380 
1381  // Check consistency in number of channels
1382  if (ncx1 != ncx2) {
1383  Error("KolmogorovTest","Number of channels in X is different, %d and %d\n",ncx1,ncx2);
1384  return 0;
1385  }
1386  if (ncy1 != ncy2) {
1387  Error("KolmogorovTest","Number of channels in Y is different, %d and %d\n",ncy1,ncy2);
1388  return 0;
1389  }
1390 
1391  // Check consistency in channel edges
1392  Bool_t afunc1 = kFALSE;
1393  Bool_t afunc2 = kFALSE;
1394  Double_t difprec = 1e-5;
1395  Double_t diff1 = TMath::Abs(xaxis1->GetXmin() - xaxis2->GetXmin());
1396  Double_t diff2 = TMath::Abs(xaxis1->GetXmax() - xaxis2->GetXmax());
1397  if (diff1 > difprec || diff2 > difprec) {
1398  Error("KolmogorovTest","histograms with different binning along X");
1399  return 0;
1400  }
1401  diff1 = TMath::Abs(yaxis1->GetXmin() - yaxis2->GetXmin());
1402  diff2 = TMath::Abs(yaxis1->GetXmax() - yaxis2->GetXmax());
1403  if (diff1 > difprec || diff2 > difprec) {
1404  Error("KolmogorovTest","histograms with different binning along Y");
1405  return 0;
1406  }
1407 
1408  // Should we include Uflows, Oflows?
1409  Int_t ibeg = 1, jbeg = 1;
1410  Int_t iend = ncx1, jend = ncy1;
1411  if (opt.Contains("U")) {ibeg = 0; jbeg = 0;}
1412  if (opt.Contains("O")) {iend = ncx1+1; jend = ncy1+1;}
1413 
1414  Int_t i,j;
1415  Double_t sum1 = 0;
1416  Double_t sum2 = 0;
1417  Double_t w1 = 0;
1418  Double_t w2 = 0;
1419  for (i = ibeg; i <= iend; i++) {
1420  for (j = jbeg; j <= jend; j++) {
1421  sum1 += h1->GetBinContent(i,j);
1422  sum2 += h2->GetBinContent(i,j);
1423  Double_t ew1 = h1->GetBinError(i,j);
1424  Double_t ew2 = h2->GetBinError(i,j);
1425  w1 += ew1*ew1;
1426  w2 += ew2*ew2;
1427 
1428  }
1429  }
1430 
1431  // Check that both scatterplots contain events
1432  if (sum1 == 0) {
1433  Error("KolmogorovTest","Integral is zero for h1=%s\n",h1->GetName());
1434  return 0;
1435  }
1436  if (sum2 == 0) {
1437  Error("KolmogorovTest","Integral is zero for h2=%s\n",h2->GetName());
1438  return 0;
1439  }
1440  // calculate the effective entries.
1441  // the case when errors are zero (w1 == 0 or w2 ==0) are equivalent to
1442  // compare to a function. In that case the rescaling is done only on sqrt(esum2) or sqrt(esum1)
1443  Double_t esum1 = 0, esum2 = 0;
1444  if (w1 > 0)
1445  esum1 = sum1 * sum1 / w1;
1446  else
1447  afunc1 = kTRUE; // use later for calculating z
1448 
1449  if (w2 > 0)
1450  esum2 = sum2 * sum2 / w2;
1451  else
1452  afunc2 = kTRUE; // use later for calculating z
1453 
1454  if (afunc2 && afunc1) {
1455  Error("KolmogorovTest","Errors are zero for both histograms\n");
1456  return 0;
1457  }
1458 
1459  // Find first Kolmogorov distance
1460  Double_t s1 = 1/sum1;
1461  Double_t s2 = 1/sum2;
1462  Double_t dfmax1 = 0;
1463  Double_t rsum1=0, rsum2=0;
1464  for (i=ibeg;i<=iend;i++) {
1465  for (j=jbeg;j<=jend;j++) {
1466  rsum1 += s1*h1->GetBinContent(i,j);
1467  rsum2 += s2*h2->GetBinContent(i,j);
1468  dfmax1 = TMath::Max(dfmax1, TMath::Abs(rsum1-rsum2));
1469  }
1470  }
1471 
1472  // Find second Kolmogorov distance
1473  Double_t dfmax2 = 0;
1474  rsum1=0, rsum2=0;
1475  for (j=jbeg;j<=jend;j++) {
1476  for (i=ibeg;i<=iend;i++) {
1477  rsum1 += s1*h1->GetBinContent(i,j);
1478  rsum2 += s2*h2->GetBinContent(i,j);
1479  dfmax2 = TMath::Max(dfmax2, TMath::Abs(rsum1-rsum2));
1480  }
1481  }
1482 
1483  // Get Kolmogorov probability: use effective entries, esum1 or esum2, for normalizing it
1484  Double_t factnm;
1485  if (afunc1) factnm = TMath::Sqrt(esum2);
1486  else if (afunc2) factnm = TMath::Sqrt(esum1);
1487  else factnm = TMath::Sqrt(esum1*sum2/(esum1+esum2));
1488 
1489  // take average of the two distances
1490  Double_t dfmax = 0.5*(dfmax1+dfmax2);
1491  Double_t z = dfmax*factnm;
1492 
1493  prb = TMath::KolmogorovProb(z);
1494 
1495  Double_t prb1 = 0, prb2 = 0;
1496  // option N to combine normalization makes sense if both afunc1 and afunc2 are false
1497  if (opt.Contains("N") && !(afunc1 || afunc2 ) ) {
1498  // Combine probabilities for shape and normalization
1499  prb1 = prb;
1500  Double_t d12 = esum1-esum2;
1501  Double_t chi2 = d12*d12/(esum1+esum2);
1502  prb2 = TMath::Prob(chi2,1);
1503  // see Eadie et al., section 11.6.2
1504  if (prb > 0 && prb2 > 0) prb = prb*prb2*(1-TMath::Log(prb*prb2));
1505  else prb = 0;
1506  }
1507 
1508  // debug printout
1509  if (opt.Contains("D")) {
1510  printf(" Kolmo Prob h1 = %s, sum1=%g\n",h1->GetName(),sum1);
1511  printf(" Kolmo Prob h2 = %s, sum2=%g\n",h2->GetName(),sum2);
1512  printf(" Kolmo Probabil = %f, Max Dist = %g\n",prb,dfmax);
1513  if (opt.Contains("N"))
1514  printf(" Kolmo Probabil = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
1515  }
1516  // This numerical error condition should never occur:
1517  if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
1518  if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
1519 
1520  if(opt.Contains("M")) return dfmax; // return average of max distance
1521 
1522  return prb;
1523 }
1524 
1525 
1526 ////////////////////////////////////////////////////////////////////////////////
1527 /// Rebin only the X axis
1528 /// see Rebin2D
1529 
1530 TH2 *TH2::RebinX(Int_t ngroup, const char *newname)
1531 {
1532  return Rebin2D(ngroup, 1, newname);
1533 }
1534 
1535 
1536 ////////////////////////////////////////////////////////////////////////////////
1537 /// Rebin only the Y axis
1538 /// see Rebin2D
1539 
1540 TH2 *TH2::RebinY(Int_t ngroup, const char *newname)
1541 {
1542  return Rebin2D(1, ngroup, newname);
1543 }
1544 
1545 ////////////////////////////////////////////////////////////////////////////////
1546 /// Override TH1::Rebin as TH2::RebinX
1547 /// Rebinning in variable binning as for TH1 is not allowed
1548 /// If a non-null pointer is given an error is flagged
1549 /// see RebinX and Rebin2D
1550 
1551 TH2 * TH2::Rebin( Int_t ngroup, const char*newname, const Double_t *xbins)
1552 {
1553  if (xbins != nullptr) {
1554  Error("Rebin","Rebinning a 2-d histogram into variable bins is not supported (it is possible only for 1-d histograms). Return a nullptr");
1555  return nullptr;
1556  }
1557  Info("Rebin","Rebinning only the x-axis. Use Rebin2D for rebinning both axes");
1558  return RebinX(ngroup, newname);
1559 }
1560 ////////////////////////////////////////////////////////////////////////////////
1561 /// Rebin this histogram grouping nxgroup/nygroup bins along the xaxis/yaxis together.
1562 ///
1563 /// if newname is not blank a new temporary histogram hnew is created.
1564 /// else the current histogram is modified (default)
1565 /// The parameter nxgroup/nygroup indicate how many bins along the xaxis/yaxis of this
1566 /// have to me merged into one bin of hnew
1567 /// If the original histogram has errors stored (via Sumw2), the resulting
1568 /// histograms has new errors correctly calculated.
1569 ///
1570 /// examples: if hpxpy is an existing TH2 histogram with 40 x 40 bins
1571 /// ~~~ {.cpp}
1572 /// hpxpy->Rebin2D(); // merges two bins along the xaxis and yaxis in one in hpxpy
1573 /// // Carefull: previous contents of hpxpy are lost
1574 /// hpxpy->RebinX(5); //merges five bins along the xaxis in one in hpxpy
1575 /// TH2 *hnew = hpxpy->RebinY(5,"hnew"); // creates a new histogram hnew
1576 /// // merging 5 bins of h1 along the yaxis in one bin
1577 /// ~~~
1578 ///
1579 /// NOTE : If nxgroup/nygroup is not an exact divider of the number of bins,
1580 /// along the xaxis/yaxis the top limit(s) of the rebinned histogram
1581 /// is changed to the upper edge of the xbin=newxbins*nxgroup resp.
1582 /// ybin=newybins*nygroup and the corresponding bins are added to
1583 /// the overflow bin.
1584 /// Statistics will be recomputed from the new bin contents.
1585 
1586 TH2 *TH2::Rebin2D(Int_t nxgroup, Int_t nygroup, const char *newname)
1587 {
1588  Int_t nxbins = fXaxis.GetNbins();
1589  Int_t nybins = fYaxis.GetNbins();
1590  Int_t nx = nxbins + 2; // normal bins + underflow and overflow
1591  Int_t ny = nybins + 2;
1596 
1597  if (GetDimension() != 2) {
1598  Error("Rebin2D", "Histogram must be TH2. This histogram has %d dimensions.", GetDimension());
1599  return 0;
1600  }
1601  if ((nxgroup <= 0) || (nxgroup > nxbins)) {
1602  Error("Rebin2D", "Illegal value of nxgroup=%d",nxgroup);
1603  return 0;
1604  }
1605  if ((nygroup <= 0) || (nygroup > nybins)) {
1606  Error("Rebin2D", "Illegal value of nygroup=%d",nygroup);
1607  return 0;
1608  }
1609 
1610  Int_t newxbins = nxbins / nxgroup;
1611  Int_t newybins = nybins / nygroup;
1612  Int_t newnx = newxbins + 2; // regular bins + overflow / underflow
1613  Int_t newny = newybins + 2; // regular bins + overflow / underflow
1614 
1615  // Save old bin contents into a new array
1616  Double_t *oldBins = new Double_t[fNcells];
1617  for (Int_t i = 0; i < fNcells; ++i) oldBins[i] = RetrieveBinContent(i);
1618 
1619  Double_t* oldErrors = NULL;
1620  if (fSumw2.fN) {
1621  oldErrors = new Double_t[fNcells];
1622  for (Int_t i = 0; i < fNcells; ++i) oldErrors[i] = GetBinErrorSqUnchecked(i);
1623  }
1624 
1625  // create a clone of the old histogram if newname is specified
1626  TH2* hnew = this;
1627  if (newname && strlen(newname)) {
1628  hnew = (TH2*)Clone();
1629  hnew->SetName(newname);
1630  }
1631 
1632  bool resetStat = false;
1633 
1634  // change axis specs and rebuild bin contents array
1635  if(newxbins * nxgroup != nxbins) {
1636  xmax = fXaxis.GetBinUpEdge(newxbins * nxgroup);
1637  resetStat = true; // stats must be reset because top bins will be moved to overflow bin
1638  }
1639  if(newybins * nygroup != nybins) {
1640  ymax = fYaxis.GetBinUpEdge(newybins * nygroup);
1641  resetStat = true; // stats must be reset because top bins will be moved to overflow bin
1642  }
1643 
1644  // save the TAttAxis members (reset by SetBins) for x axis
1645  Int_t nXdivisions = fXaxis.GetNdivisions();
1646  Color_t xAxisColor = fXaxis.GetAxisColor();
1647  Color_t xLabelColor = fXaxis.GetLabelColor();
1648  Style_t xLabelFont = fXaxis.GetLabelFont();
1649  Float_t xLabelOffset = fXaxis.GetLabelOffset();
1650  Float_t xLabelSize = fXaxis.GetLabelSize();
1651  Float_t xTickLength = fXaxis.GetTickLength();
1652  Float_t xTitleOffset = fXaxis.GetTitleOffset();
1653  Float_t xTitleSize = fXaxis.GetTitleSize();
1654  Color_t xTitleColor = fXaxis.GetTitleColor();
1655  Style_t xTitleFont = fXaxis.GetTitleFont();
1656  // save the TAttAxis members (reset by SetBins) for y axis
1657  Int_t nYdivisions = fYaxis.GetNdivisions();
1658  Color_t yAxisColor = fYaxis.GetAxisColor();
1659  Color_t yLabelColor = fYaxis.GetLabelColor();
1660  Style_t yLabelFont = fYaxis.GetLabelFont();
1661  Float_t yLabelOffset = fYaxis.GetLabelOffset();
1662  Float_t yLabelSize = fYaxis.GetLabelSize();
1663  Float_t yTickLength = fYaxis.GetTickLength();
1664  Float_t yTitleOffset = fYaxis.GetTitleOffset();
1665  Float_t yTitleSize = fYaxis.GetTitleSize();
1666  Color_t yTitleColor = fYaxis.GetTitleColor();
1667  Style_t yTitleFont = fYaxis.GetTitleFont();
1668 
1669 
1670  // copy merged bin contents (ignore under/overflows)
1671  if (nxgroup != 1 || nygroup != 1) {
1672  if(fXaxis.GetXbins()->GetSize() > 0 || fYaxis.GetXbins()->GetSize() > 0){
1673  // variable bin sizes in x or y, don't treat both cases separately
1674  Double_t *xbins = new Double_t[newxbins + 1];
1675  for(Int_t i = 0; i <= newxbins; ++i) xbins[i] = fXaxis.GetBinLowEdge(1 + i * nxgroup);
1676  Double_t *ybins = new Double_t[newybins + 1];
1677  for(Int_t i = 0; i <= newybins; ++i) ybins[i] = fYaxis.GetBinLowEdge(1 + i * nygroup);
1678  hnew->SetBins(newxbins, xbins, newybins, ybins); // changes also errors array (if any)
1679  delete [] xbins;
1680  delete [] ybins;
1681  } else {
1682  hnew->SetBins(newxbins, xmin, xmax, newybins, ymin, ymax); //changes also errors array
1683  }
1684 
1685  // (0, 0): x - underflow; y - underflow
1686  hnew->UpdateBinContent(0, oldBins[0]);
1687  if (oldErrors) hnew->fSumw2[0] = 0;
1688 
1689  // (x, 0): x - regular / overflow; y - underflow
1690  for(Int_t binx = 1, oldbinx = 1; binx < newnx; ++binx, oldbinx += nxgroup){
1691  Double_t binContent = 0.0, binErrorSq = 0.0;
1692  for (Int_t i = 0; i < nxgroup && (oldbinx + i) < nx; ++i) {
1693  Int_t bin = oldbinx + i;
1694  binContent += oldBins[bin];
1695  if(oldErrors) binErrorSq += oldErrors[bin];
1696  }
1697  Int_t newbin = binx;
1698  hnew->UpdateBinContent(newbin, binContent);
1699  if (oldErrors) hnew->fSumw2[newbin] = binErrorSq;
1700  }
1701 
1702  // (0, y): x - underflow; y - regular / overflow
1703  for(Int_t biny = 1, oldbiny = 1; biny < newny; ++biny, oldbiny += nygroup){
1704  Double_t binContent = 0.0, binErrorSq = 0.0;
1705  for (Int_t j = 0; j < nygroup && (oldbiny + j) < ny; ++j) {
1706  Int_t bin = (oldbiny + j) * nx;
1707  binContent += oldBins[bin];
1708  if(oldErrors) binErrorSq += oldErrors[bin];
1709  }
1710  Int_t newbin = biny * newnx;
1711  hnew->UpdateBinContent(newbin, binContent);
1712  if (oldErrors) hnew->fSumw2[newbin] = binErrorSq;
1713  }
1714 
1715  // (x, y): x - regular / overflow; y - regular / overflow
1716  for (Int_t binx = 1, oldbinx = 1; binx < newnx; ++binx, oldbinx += nxgroup) {
1717  for (Int_t biny = 1, oldbiny = 1; biny < newny; ++biny, oldbiny += nygroup) {
1718  Double_t binContent = 0.0, binErrorSq = 0.0;
1719  for (Int_t i = 0; i < nxgroup && (oldbinx + i) < nx; ++i) {
1720  for (Int_t j = 0; j < nygroup && (oldbiny + j) < ny; ++j) {
1721  Int_t bin = oldbinx + i + (oldbiny + j) * nx;
1722  binContent += oldBins[bin];
1723  if (oldErrors) binErrorSq += oldErrors[bin];
1724  }
1725  }
1726  Int_t newbin = binx + biny * newnx;
1727  hnew->UpdateBinContent(newbin, binContent);
1728  if (oldErrors) hnew->fSumw2[newbin] = binErrorSq;
1729  }
1730  }
1731  }
1732 
1733  // Restore x axis attributes
1734  fXaxis.SetNdivisions(nXdivisions);
1735  fXaxis.SetAxisColor(xAxisColor);
1736  fXaxis.SetLabelColor(xLabelColor);
1737  fXaxis.SetLabelFont(xLabelFont);
1738  fXaxis.SetLabelOffset(xLabelOffset);
1739  fXaxis.SetLabelSize(xLabelSize);
1740  fXaxis.SetTickLength(xTickLength);
1741  fXaxis.SetTitleOffset(xTitleOffset);
1742  fXaxis.SetTitleSize(xTitleSize);
1743  fXaxis.SetTitleColor(xTitleColor);
1744  fXaxis.SetTitleFont(xTitleFont);
1745  // Restore y axis attributes
1746  fYaxis.SetNdivisions(nYdivisions);
1747  fYaxis.SetAxisColor(yAxisColor);
1748  fYaxis.SetLabelColor(yLabelColor);
1749  fYaxis.SetLabelFont(yLabelFont);
1750  fYaxis.SetLabelOffset(yLabelOffset);
1751  fYaxis.SetLabelSize(yLabelSize);
1752  fYaxis.SetTickLength(yTickLength);
1753  fYaxis.SetTitleOffset(yTitleOffset);
1754  fYaxis.SetTitleSize(yTitleSize);
1755  fYaxis.SetTitleColor(yTitleColor);
1756  fYaxis.SetTitleFont(yTitleFont);
1757 
1758  if (resetStat) hnew->ResetStats();
1759 
1760  delete [] oldBins;
1761  if (oldErrors) delete [] oldErrors;
1762  return hnew;
1763 }
1764 
1765 
1766 ////////////////////////////////////////////////////////////////////////////////
1767 
1768 TProfile *TH2::DoProfile(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
1769 {
1770  TString opt = option;
1771  // extract cut infor
1772  TString cut;
1773  Int_t i1 = opt.Index("[");
1774  if (i1>=0) {
1775  Int_t i2 = opt.Index("]");
1776  cut = opt(i1,i2-i1+1);
1777  }
1778  opt.ToLower();
1779  bool originalRange = opt.Contains("o");
1780 
1781  const TAxis& outAxis = ( onX ? fXaxis : fYaxis );
1782  const TAxis& inAxis = ( onX ? fYaxis : fXaxis );
1783  Int_t inN = inAxis.GetNbins();
1784  const char *expectedName = ( onX ? "_pfx" : "_pfy" );
1785 
1786  // outer axis cannot be outside original axis (this fixes ROOT-8781)
1787  // and firstOutBin and lastOutBin cannot be both equal to zero
1788  Int_t firstOutBin = std::max(outAxis.GetFirst(),1);
1789  Int_t lastOutBin = std::min(outAxis.GetLast(),outAxis.GetNbins() ) ;
1790 
1791  if ( lastbin < firstbin && inAxis.TestBit(TAxis::kAxisRange) ) {
1792  firstbin = inAxis.GetFirst();
1793  lastbin = inAxis.GetLast();
1794  // For special case of TAxis::SetRange, when first == 1 and last
1795  // = N and the range bit has been set, the TAxis will return 0
1796  // for both.
1797  if (firstbin == 0 && lastbin == 0)
1798  {
1799  firstbin = 1;
1800  lastbin = inAxis.GetNbins();
1801  }
1802  }
1803  if (firstbin < 0) firstbin = 1;
1804  if (lastbin < 0) lastbin = inN;
1805  if (lastbin > inN+1) lastbin = inN;
1806 
1807  // Create the profile histogram
1808  char *pname = (char*)name;
1809  if (name && strcmp(name, expectedName) == 0) {
1810  Int_t nch = strlen(GetName()) + 5;
1811  pname = new char[nch];
1812  snprintf(pname,nch,"%s%s",GetName(),name);
1813  }
1814  TProfile *h1=0;
1815  //check if a profile with identical name exist
1816  // if compatible reset and re-use previous histogram
1817  TObject *h1obj = gROOT->FindObject(pname);
1818  if (h1obj && h1obj->InheritsFrom(TH1::Class())) {
1819  if (h1obj->IsA() != TProfile::Class() ) {
1820  Error("DoProfile","Histogram with name %s must be a TProfile and is a %s",name,h1obj->ClassName());
1821  return 0;
1822  }
1823  h1 = (TProfile*)h1obj;
1824  // reset the existing histogram and set always the new binning for the axis
1825  // This avoid problems when the histogram already exists and the histograms is rebinned or its range has changed
1826  // (see https://savannah.cern.ch/bugs/?94101 or https://savannah.cern.ch/bugs/?95808 )
1827  h1->Reset();
1828  const TArrayD *xbins = outAxis.GetXbins();
1829  if (xbins->fN == 0) {
1830  if ( originalRange )
1831  h1->SetBins(outAxis.GetNbins(),outAxis.GetXmin(),outAxis.GetXmax());
1832  else
1833  h1->SetBins(lastOutBin-firstOutBin+1,outAxis.GetBinLowEdge(firstOutBin),outAxis.GetBinUpEdge(lastOutBin));
1834  } else {
1835  // case variable bins
1836  if (originalRange )
1837  h1->SetBins(outAxis.GetNbins(),xbins->fArray);
1838  else
1839  h1->SetBins(lastOutBin-firstOutBin+1,&xbins->fArray[firstOutBin-1]);
1840  }
1841  }
1842 
1843  Int_t ncuts = 0;
1844  if (opt.Contains("[")) {
1845  ((TH2 *)this)->GetPainter();
1846  if (fPainter) ncuts = fPainter->MakeCuts((char*)cut.Data());
1847  }
1848 
1849  if (!h1) {
1850  const TArrayD *bins = outAxis.GetXbins();
1851  if (bins->fN == 0) {
1852  if ( originalRange )
1853  h1 = new TProfile(pname,GetTitle(),outAxis.GetNbins(),outAxis.GetXmin(),outAxis.GetXmax(),opt);
1854  else
1855  h1 = new TProfile(pname,GetTitle(),lastOutBin-firstOutBin+1,
1856  outAxis.GetBinLowEdge(firstOutBin),
1857  outAxis.GetBinUpEdge(lastOutBin), opt);
1858  } else {
1859  // case variable bins
1860  if (originalRange )
1861  h1 = new TProfile(pname,GetTitle(),outAxis.GetNbins(),bins->fArray,opt);
1862  else
1863  h1 = new TProfile(pname,GetTitle(),lastOutBin-firstOutBin+1,&bins->fArray[firstOutBin-1],opt);
1864  }
1865  }
1866  if (pname != name) delete [] pname;
1867 
1868  // Copy attributes
1869  h1->GetXaxis()->ImportAttributes( &outAxis);
1870  h1->SetLineColor(this->GetLineColor());
1871  h1->SetFillColor(this->GetFillColor());
1872  h1->SetMarkerColor(this->GetMarkerColor());
1873  h1->SetMarkerStyle(this->GetMarkerStyle());
1874 
1875  // check if histogram is weighted
1876  // in case need to store sum of weight square/bin for the profile
1877  TArrayD & binSumw2 = *(h1->GetBinSumw2());
1878  bool useWeights = (GetSumw2N() > 0);
1879  if (useWeights && (binSumw2.fN != h1->GetNcells()) ) h1->Sumw2();
1880  // we need to set this bit because we fill the profile using a single Fill for many entries
1881  // This is needed for the changes applied to make automatically the histogram weighted in ROOT 6 versions
1882  else h1->SetBit(TH1::kIsNotW);
1883 
1884  // Fill the profile histogram
1885  // no entries/bin is available so can fill only using bin content as weight
1886  Double_t totcont = 0;
1887 
1888  // implement filling of projected histogram
1889  // outbin is bin number of outAxis (the projected axis). Loop is done on all bin of TH2 histograms
1890  // inbin is the axis being integrated. Loop is done only on the selected bins
1891  for ( Int_t outbin = 0; outbin <= outAxis.GetNbins() + 1; ++outbin) {
1892  if (outAxis.TestBit(TAxis::kAxisRange) && ( outbin < firstOutBin || outbin > lastOutBin )) continue;
1893 
1894  // find corresponding bin number in h1 for outbin (binOut)
1895  Double_t xOut = outAxis.GetBinCenter(outbin);
1896  Int_t binOut = h1->GetXaxis()->FindBin( xOut );
1897  if (binOut <0) continue;
1898 
1899  for (Int_t inbin = firstbin ; inbin <= lastbin ; ++inbin) {
1900  Int_t binx, biny;
1901  if (onX) { binx = outbin; biny=inbin; }
1902  else { binx = inbin; biny=outbin; }
1903 
1904  if (ncuts) {
1905  if (!fPainter->IsInside(binx,biny)) continue;
1906  }
1907  Int_t bin = GetBin(binx, biny);
1908  Double_t cxy = RetrieveBinContent(bin);
1909 
1910 
1911  if (cxy) {
1912  Double_t tmp = 0;
1913  // the following fill update wrongly the fBinSumw2- need to save it before
1914  if ( useWeights ) tmp = binSumw2.fArray[binOut];
1915  h1->Fill( xOut, inAxis.GetBinCenter(inbin), cxy );
1916  if ( useWeights ) binSumw2.fArray[binOut] = tmp + fSumw2.fArray[bin];
1917  totcont += cxy;
1918  }
1919 
1920  }
1921  }
1922 
1923  // the statistics must be recalculated since by using the Fill method the total sum of weight^2 is
1924  // not computed correctly
1925  // for a profile does not much sense to re-use statistics of original TH2
1926  h1->ResetStats();
1927  // Also we need to set the entries since they have not been correctly calculated during the projection
1928  // we can only set them to the effective entries
1929  h1->SetEntries( h1->GetEffectiveEntries() );
1930 
1931 
1932  if (opt.Contains("d")) {
1933  TVirtualPad *padsav = gPad;
1934  TVirtualPad *pad = gROOT->GetSelectedPad();
1935  if (pad) pad->cd();
1936  opt.Remove(opt.First("d"),1);
1937  if (!gPad || !gPad->FindObject(h1)) {
1938  h1->Draw(opt);
1939  } else {
1940  h1->Paint(opt);
1941  }
1942  if (padsav) padsav->cd();
1943  }
1944  return h1;
1945 }
1946 
1947 
1948 ////////////////////////////////////////////////////////////////////////////////
1949 /// Project a 2-D histogram into a profile histogram along X.
1950 ///
1951 /// The projection is made from the channels along the Y axis
1952 /// ranging from firstybin to lastybin included.
1953 /// By default, bins 1 to ny are included
1954 /// When all bins are included, the number of entries in the projection
1955 /// is set to the number of entries of the 2-D histogram, otherwise
1956 /// the number of entries is incremented by 1 for all non empty cells.
1957 ///
1958 /// if option "d" is specified, the profile is drawn in the current pad.
1959 ///
1960 /// if option "o" original axis range of the target axes will be
1961 /// kept, but only bins inside the selected range will be filled.
1962 ///
1963 /// The option can also be used to specify the projected profile error type.
1964 /// Values which can be used are 's', 'i', or 'g'. See TProfile::BuildOptions for details
1965 ///
1966 /// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
1967 /// One must create a graphical cut (mouse or C++) and specify the name
1968 /// of the cut between [] in the option.
1969 /// For example, with a TCutG named "cutg", one can call:
1970 /// myhist->ProfileX(" ",firstybin,lastybin,"[cutg]");
1971 /// To invert the cut, it is enough to put a "-" in front of its name:
1972 /// myhist->ProfileX(" ",firstybin,lastybin,"[-cutg]");
1973 /// It is possible to apply several cuts ("," means logical AND):
1974 /// myhist->ProfileX(" ",firstybin,lastybin,"[cutg1,cutg2]");
1975 ///
1976 /// NOTE that if a TProfile named "name" exists in the current directory or pad with
1977 /// a compatible axis the profile is reset and filled again with the projected contents of the TH2.
1978 /// In the case of axis incompatibility an error is reported and a NULL pointer is returned.
1979 ///
1980 /// NOTE that the X axis attributes of the TH2 are copied to the X axis of the profile.
1981 ///
1982 /// NOTE that the default under- / overflow behavior differs from what ProjectionX
1983 /// does! Profiles take the bin center into account, so here the under- and overflow
1984 /// bins are ignored by default.
1985 ///
1986 /// NOTE that the return profile histogram is computed using the Y bin center values instead of
1987 /// the real Y values which are used to fill the 2d histogram. Therefore the obtained profile is just an approximation of the
1988 /// correct profile histogram that would be obtained when filling it directly with the original data (see ROOT-7770)
1989 
1990 
1991 TProfile *TH2::ProfileX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
1992 {
1993  return DoProfile(true, name, firstybin, lastybin, option);
1994 
1995 }
1996 
1997 
1998 ////////////////////////////////////////////////////////////////////////////////
1999 /// Project a 2-D histogram into a profile histogram along Y.
2000 ///
2001 /// The projection is made from the channels along the X axis
2002 /// ranging from firstxbin to lastxbin included.
2003 /// By default, bins 1 to nx are included
2004 /// When all bins are included, the number of entries in the projection
2005 /// is set to the number of entries of the 2-D histogram, otherwise
2006 /// the number of entries is incremented by 1 for all non empty cells.
2007 ///
2008 /// if option "d" is specified, the profile is drawn in the current pad.
2009 ///
2010 /// if option "o" , the original axis range of the target axis will be
2011 /// kept, but only bins inside the selected range will be filled.
2012 ///
2013 /// The option can also be used to specify the projected profile error type.
2014 /// Values which can be used are 's', 'i', or 'g'. See TProfile::BuildOptions for details
2015 /// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
2016 ///
2017 /// One must create a graphical cut (mouse or C++) and specify the name
2018 /// of the cut between [] in the option.
2019 /// For example, with a TCutG named "cutg", one can call:
2020 /// myhist->ProfileY(" ",firstybin,lastybin,"[cutg]");
2021 /// To invert the cut, it is enough to put a "-" in front of its name:
2022 /// myhist->ProfileY(" ",firstybin,lastybin,"[-cutg]");
2023 /// It is possible to apply several cuts:
2024 /// myhist->ProfileY(" ",firstybin,lastybin,"[cutg1,cutg2]");
2025 ///
2026 /// NOTE that if a TProfile named "name" exists in the current directory or pad with
2027 /// a compatible axis the profile is reset and filled again with the projected contents of the TH2.
2028 /// In the case of axis incompatibility an error is reported and a NULL pointer is returned.
2029 ///
2030 /// NOTE that the Y axis attributes of the TH2 are copied to the X axis of the profile.
2031 ///
2032 /// NOTE that the default under- / overflow behavior differs from what ProjectionX
2033 /// does! Profiles take the bin center into account, so here the under- and overflow
2034 /// bins are ignored by default.
2035 ///
2036 /// NOTE that the return profile histogram is computed using the X bin center values instead of
2037 /// the real X values which are used to fill the 2d histogram. Therefore the obtained profile is just an approximation of the
2038 /// correct profile histogram that would be obtained when filling it directly with the original data (see ROOT-7770)
2039 
2040 
2041 TProfile *TH2::ProfileY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
2042 {
2043  return DoProfile(false, name, firstxbin, lastxbin, option);
2044 }
2045 
2046 
2047 ////////////////////////////////////////////////////////////////////////////////
2048 /// Internal (protected) method for performing projection on the X or Y axis
2049 /// called by ProjectionX or ProjectionY
2050 
2051 TH1D *TH2::DoProjection(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
2052 {
2053  const char *expectedName = 0;
2054  Int_t inNbin;
2055  const TAxis* outAxis;
2056  const TAxis* inAxis;
2057 
2058  TString opt = option;
2059  TString cut;
2060  Int_t i1 = opt.Index("[");
2061  if (i1>=0) {
2062  Int_t i2 = opt.Index("]");
2063  cut = opt(i1,i2-i1+1);
2064  }
2065  opt.ToLower(); //must be called after having parsed the cut name
2066  bool originalRange = opt.Contains("o");
2067 
2068  if ( onX )
2069  {
2070  expectedName = "_px";
2071  inNbin = fYaxis.GetNbins();
2072  outAxis = GetXaxis();
2073  inAxis = GetYaxis();
2074  }
2075  else
2076  {
2077  expectedName = "_py";
2078  inNbin = fXaxis.GetNbins();
2079  outAxis = GetYaxis();
2080  inAxis = GetXaxis();
2081  }
2082 
2083  // outer axis cannot be outside original axis (this fixes ROOT-8781)
2084  // and firstOutBin and lastOutBin cannot be both equal to zero
2085  Int_t firstOutBin = std::max(outAxis->GetFirst(),1);
2086  Int_t lastOutBin = std::min(outAxis->GetLast(),outAxis->GetNbins() ) ;
2087 
2088  if ( lastbin < firstbin && inAxis->TestBit(TAxis::kAxisRange) ) {
2089  firstbin = inAxis->GetFirst();
2090  lastbin = inAxis->GetLast();
2091  // For special case of TAxis::SetRange, when first == 1 and last
2092  // = N and the range bit has been set, the TAxis will return 0
2093  // for both.
2094  if (firstbin == 0 && lastbin == 0)
2095  {
2096  firstbin = 1;
2097  lastbin = inAxis->GetNbins();
2098  }
2099  }
2100  if (firstbin < 0) firstbin = 0;
2101  if (lastbin < 0) lastbin = inNbin + 1;
2102  if (lastbin > inNbin+1) lastbin = inNbin + 1;
2103 
2104  // Create the projection histogram
2105  char *pname = (char*)name;
2106  if (name && strcmp(name,expectedName) == 0) {
2107  Int_t nch = strlen(GetName()) + 4;
2108  pname = new char[nch];
2109  snprintf(pname,nch,"%s%s",GetName(),name);
2110  }
2111  TH1D *h1=0;
2112  //check if histogram with identical name exist
2113  // if compatible reset and re-use previous histogram
2114  // (see https://savannah.cern.ch/bugs/?54340)
2115  TObject *h1obj = gROOT->FindObject(pname);
2116  if (h1obj && h1obj->InheritsFrom(TH1::Class())) {
2117  if (h1obj->IsA() != TH1D::Class() ) {
2118  Error("DoProjection","Histogram with name %s must be a TH1D and is a %s",name,h1obj->ClassName());
2119  return 0;
2120  }
2121  h1 = (TH1D*)h1obj;
2122  // reset the existing histogram and set always the new binning for the axis
2123  // This avoid problems when the histogram already exists and the histograms is rebinned or its range has changed
2124  // (see https://savannah.cern.ch/bugs/?94101 or https://savannah.cern.ch/bugs/?95808 )
2125  h1->Reset();
2126  const TArrayD *xbins = outAxis->GetXbins();
2127  if (xbins->fN == 0) {
2128  if ( originalRange )
2129  h1->SetBins(outAxis->GetNbins(),outAxis->GetXmin(),outAxis->GetXmax());
2130  else
2131  h1->SetBins(lastOutBin-firstOutBin+1,outAxis->GetBinLowEdge(firstOutBin),outAxis->GetBinUpEdge(lastOutBin));
2132  } else {
2133  // case variable bins
2134  if (originalRange )
2135  h1->SetBins(outAxis->GetNbins(),xbins->fArray);
2136  else
2137  h1->SetBins(lastOutBin-firstOutBin+1,&xbins->fArray[firstOutBin-1]);
2138  }
2139  }
2140 
2141  Int_t ncuts = 0;
2142  if (opt.Contains("[")) {
2143  ((TH2 *)this)->GetPainter();
2144  if (fPainter) ncuts = fPainter->MakeCuts((char*)cut.Data());
2145  }
2146 
2147  if (!h1) {
2148  const TArrayD *bins = outAxis->GetXbins();
2149  if (bins->fN == 0) {
2150  if ( originalRange )
2151  h1 = new TH1D(pname,GetTitle(),outAxis->GetNbins(),outAxis->GetXmin(),outAxis->GetXmax());
2152  else
2153  h1 = new TH1D(pname,GetTitle(),lastOutBin-firstOutBin+1,
2154  outAxis->GetBinLowEdge(firstOutBin),outAxis->GetBinUpEdge(lastOutBin));
2155  } else {
2156  // case variable bins
2157  if (originalRange )
2158  h1 = new TH1D(pname,GetTitle(),outAxis->GetNbins(),bins->fArray);
2159  else
2160  h1 = new TH1D(pname,GetTitle(),lastOutBin-firstOutBin+1,&bins->fArray[firstOutBin-1]);
2161  }
2162  if (opt.Contains("e") || GetSumw2N() ) h1->Sumw2();
2163  }
2164  if (pname != name) delete [] pname;
2165 
2166  // Copy the axis attributes and the axis labels if needed.
2167  h1->GetXaxis()->ImportAttributes(outAxis);
2168  THashList* labels=outAxis->GetLabels();
2169  if (labels) {
2170  TIter iL(labels);
2171  TObjString* lb;
2172  Int_t i = 1;
2173  while ((lb=(TObjString*)iL())) {
2174  h1->GetXaxis()->SetBinLabel(i,lb->String().Data());
2175  i++;
2176  }
2177  }
2178 
2179  h1->SetLineColor(this->GetLineColor());
2180  h1->SetFillColor(this->GetFillColor());
2181  h1->SetMarkerColor(this->GetMarkerColor());
2182  h1->SetMarkerStyle(this->GetMarkerStyle());
2183 
2184  // Fill the projected histogram
2185  Double_t cont,err2;
2186  Double_t totcont = 0;
2187  Bool_t computeErrors = h1->GetSumw2N();
2188 
2189  // implement filling of projected histogram
2190  // outbin is bin number of outAxis (the projected axis). Loop is done on all bin of TH2 histograms
2191  // inbin is the axis being integrated. Loop is done only on the selected bins
2192  for ( Int_t outbin = 0; outbin <= outAxis->GetNbins() + 1; ++outbin) {
2193  err2 = 0;
2194  cont = 0;
2195  if (outAxis->TestBit(TAxis::kAxisRange) && ( outbin < firstOutBin || outbin > lastOutBin )) continue;
2196 
2197  for (Int_t inbin = firstbin ; inbin <= lastbin ; ++inbin) {
2198  Int_t binx, biny;
2199  if (onX) { binx = outbin; biny=inbin; }
2200  else { binx = inbin; biny=outbin; }
2201 
2202  if (ncuts) {
2203  if (!fPainter->IsInside(binx,biny)) continue;
2204  }
2205  // sum bin content and error if needed
2206  cont += GetBinContent(binx,biny);
2207  if (computeErrors) {
2208  Double_t exy = GetBinError(binx,biny);
2209  err2 += exy*exy;
2210  }
2211  }
2212  // find corresponding bin number in h1 for outbin
2213  Int_t binOut = h1->GetXaxis()->FindBin( outAxis->GetBinCenter(outbin) );
2214  h1->SetBinContent(binOut ,cont);
2215  if (computeErrors) h1->SetBinError(binOut,TMath::Sqrt(err2));
2216  // sum all content
2217  totcont += cont;
2218  }
2219 
2220  // check if we can re-use the original statistics from the previous histogram
2221  bool reuseStats = false;
2222  if ( ( GetStatOverflowsBehaviour() == false && firstbin == 1 && lastbin == inNbin ) ||
2223  ( GetStatOverflowsBehaviour() == true && firstbin == 0 && lastbin == inNbin + 1 ) )
2224  reuseStats = true;
2225  else {
2226  // also if total content match we can re-use
2227  double eps = 1.E-12;
2228  if (IsA() == TH2F::Class() ) eps = 1.E-6;
2229  if (fTsumw != 0 && TMath::Abs( fTsumw - totcont) < TMath::Abs(fTsumw) * eps)
2230  reuseStats = true;
2231  }
2232  if (ncuts) reuseStats = false;
2233  // retrieve the statistics and set in projected histogram if we can re-use it
2234  bool reuseEntries = reuseStats;
2235  // can re-use entries if underflow/overflow are included
2236  reuseEntries &= (firstbin==0 && lastbin == inNbin+1);
2237  if (reuseStats) {
2238  Double_t stats[kNstat];
2239  GetStats(stats);
2240  if (!onX) { // case of projection on Y
2241  stats[2] = stats[4];
2242  stats[3] = stats[5];
2243  }
2244  h1->PutStats(stats);
2245  }
2246  else {
2247  // the statistics is automatically recalculated since it is reset by the call to SetBinContent
2248  // we just need to set the entries since they have not been correctly calculated during the projection
2249  // we can only set them to the effective entries
2250  h1->SetEntries( h1->GetEffectiveEntries() );
2251  }
2252  if (reuseEntries) {
2253  h1->SetEntries(fEntries);
2254  }
2255  else {
2256  // re-compute the entries
2257  // in case of error calculation (i.e. when Sumw2() is set)
2258  // use the effective entries for the entries
2259  // since this is the only way to estimate them
2260  Double_t entries = TMath::Floor( totcont + 0.5); // to avoid numerical rounding
2261  if (h1->GetSumw2N()) entries = h1->GetEffectiveEntries();
2262  h1->SetEntries( entries );
2263  }
2264 
2265  if (opt.Contains("d")) {
2266  TVirtualPad *padsav = gPad;
2267  TVirtualPad *pad = gROOT->GetSelectedPad();
2268  if (pad) pad->cd();
2269  opt.Remove(opt.First("d"),1);
2270  // remove also other options
2271  if (opt.Contains("e")) opt.Remove(opt.First("e"),1);
2272  if (!gPad || !gPad->FindObject(h1)) {
2273  h1->Draw(opt);
2274  } else {
2275  h1->Paint(opt);
2276  }
2277  if (padsav) padsav->cd();
2278  }
2279 
2280  return h1;
2281 }
2282 
2283 
2284 ////////////////////////////////////////////////////////////////////////////////
2285 /// Project a 2-D histogram into a 1-D histogram along X.
2286 ///
2287 /// The projection is always of the type TH1D.
2288 /// The projection is made from the channels along the Y axis
2289 /// ranging from firstybin to lastybin included.
2290 /// By default, all bins including under- and overflow are included.
2291 /// The number of entries in the projection is estimated from the
2292 /// number of effective entries for all the cells included in the projection.
2293 ///
2294 /// To exclude the underflow bins in Y, use firstybin=1.
2295 /// To exclude the overflow bins in Y, use lastybin=nx.
2296 ///
2297 /// if option "e" is specified, the errors are computed.
2298 /// if option "d" is specified, the projection is drawn in the current pad.
2299 /// if option "o" original axis range of the taget axes will be
2300 /// kept, but only bins inside the selected range will be filled.
2301 ///
2302 /// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
2303 /// One must create a graphical cut (mouse or C++) and specify the name
2304 /// of the cut between [] in the option.
2305 /// For example, with a TCutG named "cutg", one can call:
2306 /// myhist->ProjectionX(" ",firstybin,lastybin,"[cutg]");
2307 /// To invert the cut, it is enough to put a "-" in front of its name:
2308 /// myhist->ProjectionX(" ",firstybin,lastybin,"[-cutg]");
2309 /// It is possible to apply several cuts:
2310 /// myhist->ProjectionX(" ",firstybin,lastybin,"[cutg1,cutg2]");
2311 ///
2312 /// NOTE that if a TH1D named "name" exists in the current directory or pad
2313 /// the histogram is reset and filled again with the projected contents of the TH2.
2314 ///
2315 /// NOTE that the X axis attributes of the TH2 are copied to the X axis of the projection.
2316 
2317 TH1D *TH2::ProjectionX(const char *name, Int_t firstybin, Int_t lastybin, Option_t *option) const
2318 {
2319  return DoProjection(true, name, firstybin, lastybin, option);
2320 }
2321 
2322 
2323 ////////////////////////////////////////////////////////////////////////////////
2324 /// Project a 2-D histogram into a 1-D histogram along Y.
2325 ///
2326 /// The projection is always of the type TH1D.
2327 /// The projection is made from the channels along the X axis
2328 /// ranging from firstxbin to lastxbin included.
2329 /// By default, all bins including under- and overflow are included.
2330 /// The number of entries in the projection is estimated from the
2331 /// number of effective entries for all the cells included in the projection
2332 ///
2333 /// To exclude the underflow bins in X, use firstxbin=1.
2334 /// To exclude the overflow bins in X, use lastxbin=nx.
2335 ///
2336 /// if option "e" is specified, the errors are computed.
2337 /// if option "d" is specified, the projection is drawn in the current pad.
2338 /// if option "o" original axis range of the taget axes will be
2339 /// kept, but only bins inside the selected range will be filled.
2340 ///
2341 /// Using a TCutG object, it is possible to select a sub-range of a 2-D histogram.
2342 /// One must create a graphical cut (mouse or C++) and specify the name
2343 /// of the cut between [] in the option.
2344 /// For example, with a TCutG named "cutg", one can call:
2345 /// myhist->ProjectionY(" ",firstxbin,lastxbin,"[cutg]");
2346 /// To invert the cut, it is enough to put a "-" in front of its name:
2347 /// myhist->ProjectionY(" ",firstxbin,lastxbin,"[-cutg]");
2348 /// It is possible to apply several cuts:
2349 /// myhist->ProjectionY(" ",firstxbin,lastxbin,"[cutg1,cutg2]");
2350 ///
2351 /// NOTE that if a TH1D named "name" exists in the current directory or pad and having
2352 /// a compatible axis, the histogram is reset and filled again with the projected contents of the TH2.
2353 /// In the case of axis incompatibility, an error is reported and a NULL pointer is returned.
2354 ///
2355 /// NOTE that the Y axis attributes of the TH2 are copied to the X axis of the projection.
2356 
2357 TH1D *TH2::ProjectionY(const char *name, Int_t firstxbin, Int_t lastxbin, Option_t *option) const
2358 {
2359  return DoProjection(false, name, firstxbin, lastxbin, option);
2360 }
2361 
2362 
2363 ////////////////////////////////////////////////////////////////////////////////
2364 /// Replace current statistics with the values in array stats
2365 
2367 {
2368  TH1::PutStats(stats);
2369  fTsumwy = stats[4];
2370  fTsumwy2 = stats[5];
2371  fTsumwxy = stats[6];
2372 }
2373 
2374 
2375 ////////////////////////////////////////////////////////////////////////////////
2376 /// Compute the X distribution of quantiles in the other variable Y
2377 /// name is the name of the returned histogram
2378 /// prob is the probability content for the quantile (0.5 is the default for the median)
2379 /// An approximate error for the quantile is computed assuming that the distribution in
2380 /// the other variable is normal. According to this approximate formula the error on the quantile is
2381 /// estimated as sqrt( p (1-p) / ( n * f(q)^2) ), where p is the probability content of the quantile and
2382 /// n is the number of events used to compute the quantile and f(q) is the probability distribution for the
2383 /// other variable evaluated at the obtained quantile. In the error estimation the probability is then assumed to be
2384 /// a normal distribution.
2385 
2386 TH1D* TH2::QuantilesX( Double_t prob, const char * name) const
2387 {
2388  return DoQuantiles(true, name, prob);
2389 }
2390 
2391 
2392 ////////////////////////////////////////////////////////////////////////////////
2393 /// Compute the Y distribution of quantiles in the other variable X
2394 /// name is the name of the returned histogram
2395 /// prob is the probability content for the quantile (0.5 is the default for the median)
2396 /// An approximate error for the quantile is computed assuming that the distribution in
2397 /// the other variable is normal.
2398 
2399 TH1D* TH2::QuantilesY( Double_t prob, const char * name) const
2400 {
2401  return DoQuantiles(false, name, prob);
2402 }
2403 
2404 
2405 ////////////////////////////////////////////////////////////////////////////////
2406 /// Implementation of quantiles for x or y
2407 
2408 TH1D* TH2::DoQuantiles(bool onX, const char * name, Double_t prob) const
2409 {
2410  const TAxis *outAxis = 0;
2411  const TAxis *inAxis = 0;
2412  if ( onX ) {
2413  outAxis = GetXaxis();
2414  inAxis = GetYaxis();
2415  } else {
2416  outAxis = GetYaxis();
2417  inAxis = GetXaxis();
2418  }
2419 
2420  // build first name of returned histogram
2421  TString qname = name;
2422  if (qname.IsNull() || qname == "_qx" || qname == "_qy") {
2423  const char * qtype = (onX) ? "qx" : "qy";
2424  qname = TString::Format("%s_%s_%3.2f",GetName(),qtype, prob);
2425  }
2426  // check if the histogram is already existing
2427  TH1D *h1=0;
2428  //check if histogram with identical name exist
2429  TObject *h1obj = gROOT->FindObject(qname);
2430  if (h1obj) {
2431  h1 = dynamic_cast<TH1D*>(h1obj);
2432  if (!h1) {
2433  Error("DoQuantiles","Histogram with name %s must be a TH1D and is a %s",qname.Data(),h1obj->ClassName());
2434  return 0;
2435  }
2436  }
2437  if (h1) {
2438  h1->Reset();
2439  } else {
2440  // create the histogram
2441  h1 = new TH1D(qname, GetTitle(), 1, 0, 1);
2442  }
2443  // set the bin content
2444  Int_t firstOutBin = std::max(outAxis->GetFirst(),1);
2445  Int_t lastOutBin = std::max(outAxis->GetLast(),outAxis->GetNbins());
2446  const TArrayD *xbins = outAxis->GetXbins();
2447  if (xbins->fN == 0)
2448  h1->SetBins(lastOutBin-firstOutBin+1,outAxis->GetBinLowEdge(firstOutBin),outAxis->GetBinUpEdge(lastOutBin));
2449  else
2450  h1->SetBins(lastOutBin-firstOutBin+1,&xbins->fArray[firstOutBin-1]);
2451 
2452  // set the bin content of the histogram
2453  Double_t pp[1];
2454  pp[0] = prob;
2455 
2456  TH1D * slice = 0;
2457  for (int ibin = inAxis->GetFirst() ; ibin <= inAxis->GetLast() ; ++ibin) {
2458  Double_t qq[1];
2459  // do a projection on the opposite axis
2460  slice = DoProjection(!onX, "tmp",ibin,ibin,"");
2461  if (!slice) break;
2462  if (slice->GetSum() == 0) continue;
2463  slice->GetQuantiles(1,qq,pp);
2464  h1->SetBinContent(ibin,qq[0]);
2465  // compute error using normal approximation
2466  // quantile error ~ sqrt (q*(1-q)/ *( n * f(xq)^2 ) from Kendall
2467  // where f(xq) is the p.d.f value at the quantile xq
2468  Double_t n = slice->GetEffectiveEntries();
2469  Double_t f = TMath::Gaus(qq[0], slice->GetMean(), slice->GetStdDev(), kTRUE);
2470  Double_t error = 0;
2471  // set the errors to zero in case of small statistics
2472  if (f > 0 && n > 1)
2473  error = TMath::Sqrt( prob*(1.-prob)/ (n * f * f) );
2474  h1->SetBinError(ibin, error);
2475  }
2476  if (slice) delete slice;
2477  return h1;
2478 }
2479 
2480 
2481 ////////////////////////////////////////////////////////////////////////////////
2482 /// Reset this histogram: contents, errors, etc.
2483 
2484 void TH2::Reset(Option_t *option)
2485 {
2486  TH1::Reset(option);
2487  TString opt = option;
2488  opt.ToUpper();
2489 
2490  if (opt.Contains("ICE") && !opt.Contains("S")) return;
2491  fTsumwy = 0;
2492  fTsumwy2 = 0;
2493  fTsumwxy = 0;
2494 }
2495 
2496 
2497 ////////////////////////////////////////////////////////////////////////////////
2498 /// Set bin content
2499 
2501 {
2502  fEntries++;
2503  fTsumw = 0;
2504  if (bin < 0) return;
2505  if (bin >= fNcells) return;
2506  UpdateBinContent(bin, content);
2507 }
2508 
2509 
2510 ////////////////////////////////////////////////////////////////////////////////
2511 /// When the mouse is moved in a pad containing a 2-d view of this histogram
2512 /// a second canvas shows the projection along X corresponding to the
2513 /// mouse position along Y.
2514 /// To stop the generation of the projections, delete the canvas
2515 /// containing the projection.
2516 
2518 {
2519  GetPainter();
2520 
2521  if (fPainter) fPainter->SetShowProjection("x",nbins);
2522 }
2523 
2524 
2525 ////////////////////////////////////////////////////////////////////////////////
2526 /// When the mouse is moved in a pad containing a 2-d view of this histogram
2527 /// a second canvas shows the projection along Y corresponding to the
2528 /// mouse position along X.
2529 /// To stop the generation of the projections, delete the canvas
2530 /// containing the projection.
2531 
2533 {
2534  GetPainter();
2535 
2536  if (fPainter) fPainter->SetShowProjection("y",nbins);
2537 }
2538 
2539 
2540 ////////////////////////////////////////////////////////////////////////////////
2541 /// This function calculates the background spectrum in this histogram.
2542 /// The background is returned as a histogram.
2543 /// to be implemented (may be)
2544 
2546 {
2547 
2548  return (TH1*)gROOT->ProcessLineFast(Form("TSpectrum2::StaticBackground((TH1*)0x%lx,%d,\"%s\")",
2549  (ULong_t)this, niter, option));
2550 }
2551 
2552 
2553 ////////////////////////////////////////////////////////////////////////////////
2554 ///Interface to TSpectrum2::Search
2555 ///the function finds peaks in this histogram where the width is > sigma
2556 ///and the peak maximum greater than threshold*maximum bin content of this.
2557 ///for more details see TSpectrum::Search.
2558 ///note the difference in the default value for option compared to TSpectrum2::Search
2559 ///option="" by default (instead of "goff")
2560 
2562 {
2563 
2564  return (Int_t)gROOT->ProcessLineFast(Form("TSpectrum2::StaticSearch((TH1*)0x%lx,%g,\"%s\",%g)",
2565  (ULong_t)this, sigma, option, threshold));
2566 }
2567 
2568 
2569 ////////////////////////////////////////////////////////////////////////////////
2570 /// Smooth bin contents of this 2-d histogram using kernel algorithms
2571 /// similar to the ones used in the raster graphics community.
2572 /// Bin contents in the active range are replaced by their smooth values.
2573 /// If Errors are defined via Sumw2, they are also scaled and computed.
2574 /// However, note the resulting errors will be correlated between different-bins, so
2575 /// the errors should not be used blindly to perform any calculation involving several bins,
2576 /// like fitting the histogram. One would need to compute also the bin by bin correlation matrix.
2577 ///
2578 /// 3 kernels are proposed k5a, k5b and k3a.
2579 /// k5a and k5b act on 5x5 cells (i-2,i-1,i,i+1,i+2, and same for j)
2580 /// k5b is a bit more stronger in smoothing
2581 /// k3a acts only on 3x3 cells (i-1,i,i+1, and same for j).
2582 /// By default the kernel "k5a" is used. You can select the kernels "k5b" or "k3a"
2583 /// via the option argument.
2584 /// If TAxis::SetRange has been called on the x or/and y axis, only the bins
2585 /// in the specified range are smoothed.
2586 /// In the current implementation if the first argument is not used (default value=1).
2587 ///
2588 /// implementation by David McKee (dmckee@bama.ua.edu). Extended by Rene Brun
2589 
2590 void TH2::Smooth(Int_t ntimes, Option_t *option)
2591 {
2592  Double_t k5a[5][5] = { { 0, 0, 1, 0, 0 },
2593  { 0, 2, 2, 2, 0 },
2594  { 1, 2, 5, 2, 1 },
2595  { 0, 2, 2, 2, 0 },
2596  { 0, 0, 1, 0, 0 } };
2597  Double_t k5b[5][5] = { { 0, 1, 2, 1, 0 },
2598  { 1, 2, 4, 2, 1 },
2599  { 2, 4, 8, 4, 2 },
2600  { 1, 2, 4, 2, 1 },
2601  { 0, 1, 2, 1, 0 } };
2602  Double_t k3a[3][3] = { { 0, 1, 0 },
2603  { 1, 2, 1 },
2604  { 0, 1, 0 } };
2605 
2606  if (ntimes > 1) {
2607  Warning("Smooth","Currently only ntimes=1 is supported");
2608  }
2609  TString opt = option;
2610  opt.ToLower();
2611  Int_t ksize_x=5;
2612  Int_t ksize_y=5;
2613  Double_t *kernel = &k5a[0][0];
2614  if (opt.Contains("k5b")) kernel = &k5b[0][0];
2615  if (opt.Contains("k3a")) {
2616  kernel = &k3a[0][0];
2617  ksize_x=3;
2618  ksize_y=3;
2619  }
2620 
2621  // find i,j ranges
2622  Int_t ifirst = fXaxis.GetFirst();
2623  Int_t ilast = fXaxis.GetLast();
2624  Int_t jfirst = fYaxis.GetFirst();
2625  Int_t jlast = fYaxis.GetLast();
2626 
2627  // Determine the size of the bin buffer(s) needed
2629  Int_t nx = GetNbinsX();
2630  Int_t ny = GetNbinsY();
2631  Int_t bufSize = (nx+2)*(ny+2);
2632  Double_t *buf = new Double_t[bufSize];
2633  Double_t *ebuf = 0;
2634  if (fSumw2.fN) ebuf = new Double_t[bufSize];
2635 
2636  // Copy all the data to the temporary buffers
2637  Int_t i,j,bin;
2638  for (i=ifirst; i<=ilast; i++){
2639  for (j=jfirst; j<=jlast; j++){
2640  bin = GetBin(i,j);
2641  buf[bin] = RetrieveBinContent(bin);
2642  if (ebuf) ebuf[bin]=GetBinError(bin);
2643  }
2644  }
2645 
2646  // Kernel tail sizes (kernel sizes must be odd for this to work!)
2647  Int_t x_push = (ksize_x-1)/2;
2648  Int_t y_push = (ksize_y-1)/2;
2649 
2650  // main work loop
2651  for (i=ifirst; i<=ilast; i++){
2652  for (j=jfirst; j<=jlast; j++) {
2653  Double_t content = 0.0;
2654  Double_t error = 0.0;
2655  Double_t norm = 0.0;
2656 
2657  for (Int_t n=0; n<ksize_x; n++) {
2658  for (Int_t m=0; m<ksize_y; m++) {
2659  Int_t xb = i+(n-x_push);
2660  Int_t yb = j+(m-y_push);
2661  if ( (xb >= 1) && (xb <= nx) && (yb >= 1) && (yb <= ny) ) {
2662  bin = GetBin(xb,yb);
2663  Double_t k = kernel[n*ksize_y +m];
2664  //if ( (k != 0.0 ) && (buf[bin] != 0.0) ) { // General version probably does not want the second condition
2665  if ( k != 0.0 ) {
2666  norm += k;
2667  content += k*buf[bin];
2668  if (ebuf) error += k*k*ebuf[bin]*ebuf[bin];
2669  }
2670  }
2671  }
2672  }
2673 
2674  if ( norm != 0.0 ) {
2675  SetBinContent(i,j,content/norm);
2676  if (ebuf) {
2677  error /= (norm*norm);
2678  SetBinError(i,j,sqrt(error));
2679  }
2680  }
2681  }
2682  }
2683  fEntries = nentries;
2684 
2685  delete [] buf;
2686  delete [] ebuf;
2687 }
2688 
2689 
2690 ////////////////////////////////////////////////////////////////////////////////
2691 /// Stream an object of class TH2.
2692 
2693 void TH2::Streamer(TBuffer &R__b)
2694 {
2695  if (R__b.IsReading()) {
2696  UInt_t R__s, R__c;
2697  Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
2698  if (R__v > 2) {
2699  R__b.ReadClassBuffer(TH2::Class(), this, R__v, R__s, R__c);
2700  return;
2701  }
2702  //====process old versions before automatic schema evolution
2703  TH1::Streamer(R__b);
2704  R__b >> fScalefactor;
2705  R__b >> fTsumwy;
2706  R__b >> fTsumwy2;
2707  R__b >> fTsumwxy;
2708  //====end of old versions
2709 
2710  } else {
2711  R__b.WriteClassBuffer(TH2::Class(),this);
2712  }
2713 }
2714 
2715 
2716 //______________________________________________________________________________
2717 // TH2C methods
2718 // TH2C a 2-D histogram with one byte per cell (char)
2719 //______________________________________________________________________________
2720 
2721 ClassImp(TH2C);
2722 
2723 
2724 ////////////////////////////////////////////////////////////////////////////////
2725 /// Constructor.
2726 
2728 {
2729  SetBinsLength(9);
2730  if (fgDefaultSumw2) Sumw2();
2731 }
2732 
2733 
2734 ////////////////////////////////////////////////////////////////////////////////
2735 /// Destructor.
2736 
2738 {
2739 }
2740 
2741 
2742 ////////////////////////////////////////////////////////////////////////////////
2743 /// Constructor.
2744 
2745 TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
2746  ,Int_t nbinsy,Double_t ylow,Double_t yup)
2747  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
2748 {
2750  if (fgDefaultSumw2) Sumw2();
2751 
2752  if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
2753 }
2754 
2755 
2756 ////////////////////////////////////////////////////////////////////////////////
2757 /// Constructor.
2758 
2759 TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
2760  ,Int_t nbinsy,Double_t ylow,Double_t yup)
2761  :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
2762 {
2764  if (fgDefaultSumw2) Sumw2();
2765 }
2766 
2767 
2768 ////////////////////////////////////////////////////////////////////////////////
2769 /// Constructor.
2770 
2771 TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
2772  ,Int_t nbinsy,const Double_t *ybins)
2773  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
2774 {
2776  if (fgDefaultSumw2) Sumw2();
2777 }
2778 
2779 
2780 ////////////////////////////////////////////////////////////////////////////////
2781 /// Constructor.
2782 
2783 TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
2784  ,Int_t nbinsy,const Double_t *ybins)
2785  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
2786 {
2788  if (fgDefaultSumw2) Sumw2();
2789 }
2790 
2791 
2792 ////////////////////////////////////////////////////////////////////////////////
2793 /// Constructor.
2794 
2795 TH2C::TH2C(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
2796  ,Int_t nbinsy,const Float_t *ybins)
2797  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
2798 {
2800  if (fgDefaultSumw2) Sumw2();
2801 }
2802 
2803 
2804 ////////////////////////////////////////////////////////////////////////////////
2805 /// Copy constructor.
2806 
2807 TH2C::TH2C(const TH2C &h2c) : TH2(), TArrayC()
2808 {
2809  ((TH2C&)h2c).Copy(*this);
2810 }
2811 
2812 
2813 ////////////////////////////////////////////////////////////////////////////////
2814 /// Increment bin content by 1.
2815 
2817 {
2818  if (fArray[bin] < 127) fArray[bin]++;
2819 }
2820 
2821 
2822 ////////////////////////////////////////////////////////////////////////////////
2823 /// Increment bin content by w.
2824 
2826 {
2827  Int_t newval = fArray[bin] + Int_t(w);
2828  if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
2829  if (newval < -127) fArray[bin] = -127;
2830  if (newval > 127) fArray[bin] = 127;
2831 }
2832 
2833 
2834 ////////////////////////////////////////////////////////////////////////////////
2835 /// Copy.
2836 
2837 void TH2C::Copy(TObject &newth2) const
2838 {
2839  TH2::Copy((TH2C&)newth2);
2840 }
2841 
2842 
2843 ////////////////////////////////////////////////////////////////////////////////
2844 /// Reset this histogram: contents, errors, etc.
2845 
2846 void TH2C::Reset(Option_t *option)
2847 {
2848  TH2::Reset(option);
2849  TArrayC::Reset();
2850 }
2851 
2852 
2853 ////////////////////////////////////////////////////////////////////////////////
2854 /// Set total number of bins including under/overflow
2855 /// Reallocate bin contents array
2856 
2858 {
2859  if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
2860  fNcells = n;
2861  TArrayC::Set(n);
2862 }
2863 
2864 
2865 ////////////////////////////////////////////////////////////////////////////////
2866 /// Stream an object of class TH2C.
2867 
2868 void TH2C::Streamer(TBuffer &R__b)
2869 {
2870  if (R__b.IsReading()) {
2871  UInt_t R__s, R__c;
2872  Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
2873  if (R__v > 2) {
2874  R__b.ReadClassBuffer(TH2C::Class(), this, R__v, R__s, R__c);
2875  return;
2876  }
2877  //====process old versions before automatic schema evolution
2878  if (R__v < 2) {
2879  R__b.ReadVersion();
2880  TH1::Streamer(R__b);
2881  TArrayC::Streamer(R__b);
2882  R__b.ReadVersion();
2883  R__b >> fScalefactor;
2884  R__b >> fTsumwy;
2885  R__b >> fTsumwy2;
2886  R__b >> fTsumwxy;
2887  } else {
2888  TH2::Streamer(R__b);
2889  TArrayC::Streamer(R__b);
2890  R__b.CheckByteCount(R__s, R__c, TH2C::IsA());
2891  }
2892  //====end of old versions
2893 
2894  } else {
2895  R__b.WriteClassBuffer(TH2C::Class(),this);
2896  }
2897 }
2898 
2899 
2900 ////////////////////////////////////////////////////////////////////////////////
2901 /// Operator =
2902 
2904 {
2905  if (this != &h1) ((TH2C&)h1).Copy(*this);
2906  return *this;
2907 }
2908 
2909 
2910 ////////////////////////////////////////////////////////////////////////////////
2911 /// Operator *
2912 
2914 {
2915  TH2C hnew = h1;
2916  hnew.Scale(c1);
2917  hnew.SetDirectory(0);
2918  return hnew;
2919 }
2920 
2921 
2922 ////////////////////////////////////////////////////////////////////////////////
2923 /// Operator +
2924 
2926 {
2927  TH2C hnew = h1;
2928  hnew.Add(&h2,1);
2929  hnew.SetDirectory(0);
2930  return hnew;
2931 }
2932 
2933 
2934 ////////////////////////////////////////////////////////////////////////////////
2935 /// Operator -
2936 
2938 {
2939  TH2C hnew = h1;
2940  hnew.Add(&h2,-1);
2941  hnew.SetDirectory(0);
2942  return hnew;
2943 }
2944 
2945 
2946 ////////////////////////////////////////////////////////////////////////////////
2947 /// Operator *
2948 
2950 {
2951  TH2C hnew = h1;
2952  hnew.Multiply(&h2);
2953  hnew.SetDirectory(0);
2954  return hnew;
2955 }
2956 
2957 
2958 ////////////////////////////////////////////////////////////////////////////////
2959 /// Operator /
2960 
2962 {
2963  TH2C hnew = h1;
2964  hnew.Divide(&h2);
2965  hnew.SetDirectory(0);
2966  return hnew;
2967 }
2968 
2969 
2970 //______________________________________________________________________________
2971 // TH2S methods
2972 // TH2S a 2-D histogram with two bytes per cell (short integer)
2973 //______________________________________________________________________________
2974 
2975 ClassImp(TH2S);
2976 
2977 
2978 ////////////////////////////////////////////////////////////////////////////////
2979 /// Constructor.
2980 
2982 {
2983  SetBinsLength(9);
2984  if (fgDefaultSumw2) Sumw2();
2985 }
2986 
2987 
2988 ////////////////////////////////////////////////////////////////////////////////
2989 /// Destructor.
2990 
2992 {
2993 }
2994 
2995 
2996 ////////////////////////////////////////////////////////////////////////////////
2997 /// Constructor.
2998 
2999 TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3000  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3001  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
3002 {
3004  if (fgDefaultSumw2) Sumw2();
3005 
3006  if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
3007 }
3008 
3009 
3010 ////////////////////////////////////////////////////////////////////////////////
3011 /// Constructor.
3012 
3013 TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3014  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3015  :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
3016 {
3018  if (fgDefaultSumw2) Sumw2();
3019 }
3020 
3021 
3022 ////////////////////////////////////////////////////////////////////////////////
3023 /// Constructor.
3024 
3025 TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3026  ,Int_t nbinsy,const Double_t *ybins)
3027  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
3028 {
3030  if (fgDefaultSumw2) Sumw2();
3031 }
3032 
3033 
3034 ////////////////////////////////////////////////////////////////////////////////
3035 /// Constructor.
3036 
3037 TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3038  ,Int_t nbinsy,const Double_t *ybins)
3039  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3040 {
3042  if (fgDefaultSumw2) Sumw2();
3043 }
3044 
3045 
3046 ////////////////////////////////////////////////////////////////////////////////
3047 /// Constructor.
3048 
3049 TH2S::TH2S(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
3050  ,Int_t nbinsy,const Float_t *ybins)
3051  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3052 {
3054  if (fgDefaultSumw2) Sumw2();
3055 }
3056 
3057 
3058 ////////////////////////////////////////////////////////////////////////////////
3059 /// Copy constructor.
3060 
3061 TH2S::TH2S(const TH2S &h2s) : TH2(), TArrayS()
3062 {
3063  ((TH2S&)h2s).Copy(*this);
3064 }
3065 
3066 
3067 ////////////////////////////////////////////////////////////////////////////////
3068 /// Increment bin content by 1.
3069 
3071 {
3072  if (fArray[bin] < 32767) fArray[bin]++;
3073 }
3074 
3075 
3076 ////////////////////////////////////////////////////////////////////////////////
3077 /// Increment bin content by w.
3078 
3080 {
3081  Int_t newval = fArray[bin] + Int_t(w);
3082  if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
3083  if (newval < -32767) fArray[bin] = -32767;
3084  if (newval > 32767) fArray[bin] = 32767;
3085 }
3086 
3087 
3088 ////////////////////////////////////////////////////////////////////////////////
3089 /// Copy.
3090 
3091 void TH2S::Copy(TObject &newth2) const
3092 {
3093  TH2::Copy((TH2S&)newth2);
3094 }
3095 
3096 
3097 ////////////////////////////////////////////////////////////////////////////////
3098 /// Reset this histogram: contents, errors, etc.
3099 
3100 void TH2S::Reset(Option_t *option)
3101 {
3102  TH2::Reset(option);
3103  TArrayS::Reset();
3104 }
3105 
3106 
3107 ////////////////////////////////////////////////////////////////////////////////
3108 /// Set total number of bins including under/overflow
3109 /// Reallocate bin contents array
3110 
3112 {
3113  if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3114  fNcells = n;
3115  TArrayS::Set(n);
3116 }
3117 
3118 
3119 ////////////////////////////////////////////////////////////////////////////////
3120 /// Stream an object of class TH2S.
3121 
3122 void TH2S::Streamer(TBuffer &R__b)
3123 {
3124  if (R__b.IsReading()) {
3125  UInt_t R__s, R__c;
3126  Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
3127  if (R__v > 2) {
3128  R__b.ReadClassBuffer(TH2S::Class(), this, R__v, R__s, R__c);
3129  return;
3130  }
3131  //====process old versions before automatic schema evolution
3132  if (R__v < 2) {
3133  R__b.ReadVersion();
3134  TH1::Streamer(R__b);
3135  TArrayS::Streamer(R__b);
3136  R__b.ReadVersion();
3137  R__b >> fScalefactor;
3138  R__b >> fTsumwy;
3139  R__b >> fTsumwy2;
3140  R__b >> fTsumwxy;
3141  } else {
3142  TH2::Streamer(R__b);
3143  TArrayS::Streamer(R__b);
3144  R__b.CheckByteCount(R__s, R__c, TH2S::IsA());
3145  }
3146  //====end of old versions
3147 
3148  } else {
3149  R__b.WriteClassBuffer(TH2S::Class(),this);
3150  }
3151 }
3152 
3153 
3154 ////////////////////////////////////////////////////////////////////////////////
3155 /// Operator =
3156 
3158 {
3159  if (this != &h1) ((TH2S&)h1).Copy(*this);
3160  return *this;
3161 }
3162 
3163 
3164 ////////////////////////////////////////////////////////////////////////////////
3165 /// Operator *
3166 
3168 {
3169  TH2S hnew = h1;
3170  hnew.Scale(c1);
3171  hnew.SetDirectory(0);
3172  return hnew;
3173 }
3174 
3175 
3176 ////////////////////////////////////////////////////////////////////////////////
3177 /// Operator +
3178 
3180 {
3181  TH2S hnew = h1;
3182  hnew.Add(&h2,1);
3183  hnew.SetDirectory(0);
3184  return hnew;
3185 }
3186 
3187 
3188 ////////////////////////////////////////////////////////////////////////////////
3189 /// Operator -
3190 
3192 {
3193  TH2S hnew = h1;
3194  hnew.Add(&h2,-1);
3195  hnew.SetDirectory(0);
3196  return hnew;
3197 }
3198 
3199 
3200 ////////////////////////////////////////////////////////////////////////////////
3201 /// Operator *
3202 
3204 {
3205  TH2S hnew = h1;
3206  hnew.Multiply(&h2);
3207  hnew.SetDirectory(0);
3208  return hnew;
3209 }
3210 
3211 
3212 ////////////////////////////////////////////////////////////////////////////////
3213 /// Operator /
3214 
3216 {
3217  TH2S hnew = h1;
3218  hnew.Divide(&h2);
3219  hnew.SetDirectory(0);
3220  return hnew;
3221 }
3222 
3223 
3224 //______________________________________________________________________________
3225 // TH2I methods
3226 // TH2I a 2-D histogram with four bytes per cell (32 bits integer)
3227 //______________________________________________________________________________
3228 
3229 ClassImp(TH2I);
3230 
3231 
3232 ////////////////////////////////////////////////////////////////////////////////
3233 /// Constructor.
3234 
3236 {
3237  SetBinsLength(9);
3238  if (fgDefaultSumw2) Sumw2();
3239 }
3240 
3241 
3242 ////////////////////////////////////////////////////////////////////////////////
3243 /// Destructor.
3244 
3246 {
3247 }
3248 
3249 
3250 ////////////////////////////////////////////////////////////////////////////////
3251 /// Constructor.
3252 
3253 TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3254  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3255  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
3256 {
3258  if (fgDefaultSumw2) Sumw2();
3259 
3260  if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
3261 }
3262 
3263 
3264 ////////////////////////////////////////////////////////////////////////////////
3265 /// Constructor.
3266 
3267 TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3268  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3269  :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
3270 {
3272  if (fgDefaultSumw2) Sumw2();
3273 }
3274 
3275 
3276 ////////////////////////////////////////////////////////////////////////////////
3277 /// Constructor.
3278 
3279 TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3280  ,Int_t nbinsy,const Double_t *ybins)
3281  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
3282 {
3284  if (fgDefaultSumw2) Sumw2();
3285 }
3286 
3287 
3288 ////////////////////////////////////////////////////////////////////////////////
3289 /// Constructor.
3290 
3291 TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3292  ,Int_t nbinsy,const Double_t *ybins)
3293  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3294 {
3296  if (fgDefaultSumw2) Sumw2();
3297 }
3298 
3299 
3300 ////////////////////////////////////////////////////////////////////////////////
3301 /// Constructor.
3302 
3303 TH2I::TH2I(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
3304  ,Int_t nbinsy,const Float_t *ybins)
3305  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3306 {
3308  if (fgDefaultSumw2) Sumw2();
3309 }
3310 
3311 
3312 ////////////////////////////////////////////////////////////////////////////////
3313 /// Copy constructor.
3314 
3315 TH2I::TH2I(const TH2I &h2i) : TH2(), TArrayI()
3316 {
3317  ((TH2I&)h2i).Copy(*this);
3318 }
3319 
3320 
3321 ////////////////////////////////////////////////////////////////////////////////
3322 /// Increment bin content by 1.
3323 
3325 {
3326  if (fArray[bin] < 2147483647) fArray[bin]++;
3327 }
3328 
3329 
3330 ////////////////////////////////////////////////////////////////////////////////
3331 /// Increment bin content by w.
3332 
3334 {
3335  Long64_t newval = fArray[bin] + Long64_t(w);
3336  if (newval > -2147483647 && newval < 2147483647) {fArray[bin] = Int_t(newval); return;}
3337  if (newval < -2147483647) fArray[bin] = -2147483647;
3338  if (newval > 2147483647) fArray[bin] = 2147483647;
3339 }
3340 
3341 
3342 ////////////////////////////////////////////////////////////////////////////////
3343 /// Copy.
3344 
3345 void TH2I::Copy(TObject &newth2) const
3346 {
3347  TH2::Copy((TH2I&)newth2);
3348 }
3349 
3350 
3351 ////////////////////////////////////////////////////////////////////////////////
3352 /// Reset this histogram: contents, errors, etc.
3353 
3354 void TH2I::Reset(Option_t *option)
3355 {
3356  TH2::Reset(option);
3357  TArrayI::Reset();
3358 }
3359 
3360 
3361 ////////////////////////////////////////////////////////////////////////////////
3362 /// Set total number of bins including under/overflow
3363 /// Reallocate bin contents array
3364 
3366 {
3367  if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3368  fNcells = n;
3369  TArrayI::Set(n);
3370 }
3371 
3372 
3373 ////////////////////////////////////////////////////////////////////////////////
3374 /// Operator =
3375 
3377 {
3378  if (this != &h1) ((TH2I&)h1).Copy(*this);
3379  return *this;
3380 }
3381 
3382 
3383 ////////////////////////////////////////////////////////////////////////////////
3384 /// Operator *
3385 
3387 {
3388  TH2I hnew = h1;
3389  hnew.Scale(c1);
3390  hnew.SetDirectory(0);
3391  return hnew;
3392 }
3393 
3394 
3395 ////////////////////////////////////////////////////////////////////////////////
3396 /// Operator +
3397 
3399 {
3400  TH2I hnew = h1;
3401  hnew.Add(&h2,1);
3402  hnew.SetDirectory(0);
3403  return hnew;
3404 }
3405 
3406 
3407 ////////////////////////////////////////////////////////////////////////////////
3408 /// Operator -
3409 
3411 {
3412  TH2I hnew = h1;
3413  hnew.Add(&h2,-1);
3414  hnew.SetDirectory(0);
3415  return hnew;
3416 }
3417 
3418 
3419 ////////////////////////////////////////////////////////////////////////////////
3420 /// Operator *
3421 
3423 {
3424  TH2I hnew = h1;
3425  hnew.Multiply(&h2);
3426  hnew.SetDirectory(0);
3427  return hnew;
3428 }
3429 
3430 
3431 ////////////////////////////////////////////////////////////////////////////////
3432 /// Operator /
3433 
3435 {
3436  TH2I hnew = h1;
3437  hnew.Divide(&h2);
3438  hnew.SetDirectory(0);
3439  return hnew;
3440 }
3441 
3442 
3443 //______________________________________________________________________________
3444 // TH2F methods
3445 // TH2F a 2-D histogram with four bytes per cell (float)
3446 //______________________________________________________________________________
3447 
3448 ClassImp(TH2F);
3449 
3450 
3451 ////////////////////////////////////////////////////////////////////////////////
3452 /// Constructor.
3453 
3455 {
3456  SetBinsLength(9);
3457  if (fgDefaultSumw2) Sumw2();
3458 }
3459 
3460 
3461 ////////////////////////////////////////////////////////////////////////////////
3462 /// Destructor.
3463 
3465 {
3466 }
3467 
3468 
3469 ////////////////////////////////////////////////////////////////////////////////
3470 /// Constructor.
3471 
3472 TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3473  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3474  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
3475 {
3477  if (fgDefaultSumw2) Sumw2();
3478 
3479  if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
3480 }
3481 
3482 
3483 ////////////////////////////////////////////////////////////////////////////////
3484 /// Constructor.
3485 
3486 TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3487  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3488  :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
3489 {
3491  if (fgDefaultSumw2) Sumw2();
3492 }
3493 
3494 
3495 ////////////////////////////////////////////////////////////////////////////////
3496 /// Constructor.
3497 
3498 TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3499  ,Int_t nbinsy,const Double_t *ybins)
3500  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
3501 {
3503  if (fgDefaultSumw2) Sumw2();
3504 }
3505 
3506 
3507 ////////////////////////////////////////////////////////////////////////////////
3508 /// Constructor.
3509 
3510 TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3511  ,Int_t nbinsy,const Double_t *ybins)
3512  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3513 {
3515  if (fgDefaultSumw2) Sumw2();
3516 }
3517 
3518 
3519 ////////////////////////////////////////////////////////////////////////////////
3520 /// Constructor.
3521 
3522 TH2F::TH2F(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
3523  ,Int_t nbinsy,const Float_t *ybins)
3524  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3525 {
3527  if (fgDefaultSumw2) Sumw2();
3528 }
3529 
3530 
3531 ////////////////////////////////////////////////////////////////////////////////
3532 /// Constructor.
3533 
3535 :TH2("TMatrixFBase","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
3536 {
3538  Int_t ilow = m.GetRowLwb();
3539  Int_t iup = m.GetRowUpb();
3540  Int_t jlow = m.GetColLwb();
3541  Int_t jup = m.GetColUpb();
3542  for (Int_t i=ilow;i<=iup;i++) {
3543  for (Int_t j=jlow;j<=jup;j++) {
3544  SetBinContent(j-jlow+1,i-ilow+1,m(i,j));
3545  }
3546  }
3547 }
3548 
3549 
3550 ////////////////////////////////////////////////////////////////////////////////
3551 /// Copy constructor.
3552 
3553 TH2F::TH2F(const TH2F &h2f) : TH2(), TArrayF()
3554 {
3555  ((TH2F&)h2f).Copy(*this);
3556 }
3557 
3558 
3559 ////////////////////////////////////////////////////////////////////////////////
3560 /// Copy.
3561 
3562 void TH2F::Copy(TObject &newth2) const
3563 {
3564  TH2::Copy((TH2F&)newth2);
3565 }
3566 
3567 
3568 ////////////////////////////////////////////////////////////////////////////////
3569 /// Reset this histogram: contents, errors, etc.
3570 
3571 void TH2F::Reset(Option_t *option)
3572 {
3573  TH2::Reset(option);
3574  TArrayF::Reset();
3575 }
3576 
3577 
3578 ////////////////////////////////////////////////////////////////////////////////
3579 /// Set total number of bins including under/overflow
3580 /// Reallocate bin contents array
3581 
3583 {
3584  if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3585  fNcells = n;
3586  TArrayF::Set(n);
3587 }
3588 
3589 
3590 ////////////////////////////////////////////////////////////////////////////////
3591 /// Stream an object of class TH2F.
3592 
3593 void TH2F::Streamer(TBuffer &R__b)
3594 {
3595  if (R__b.IsReading()) {
3596  UInt_t R__s, R__c;
3597  Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
3598  if (R__v > 2) {
3599  R__b.ReadClassBuffer(TH2F::Class(), this, R__v, R__s, R__c);
3600  return;
3601  }
3602  //====process old versions before automatic schema evolution
3603  if (R__v < 2) {
3604  R__b.ReadVersion();
3605  TH1::Streamer(R__b);
3606  TArrayF::Streamer(R__b);
3607  R__b.ReadVersion();
3608  R__b >> fScalefactor;
3609  R__b >> fTsumwy;
3610  R__b >> fTsumwy2;
3611  R__b >> fTsumwxy;
3612  } else {
3613  TH2::Streamer(R__b);
3614  TArrayF::Streamer(R__b);
3615  R__b.CheckByteCount(R__s, R__c, TH2F::IsA());
3616  }
3617  //====end of old versions
3618 
3619  } else {
3620  R__b.WriteClassBuffer(TH2F::Class(),this);
3621  }
3622 }
3623 
3624 
3625 ////////////////////////////////////////////////////////////////////////////////
3626 /// Operator =
3627 
3629 {
3630  if (this != &h1) ((TH2F&)h1).Copy(*this);
3631  return *this;
3632 }
3633 
3634 
3635 ////////////////////////////////////////////////////////////////////////////////
3636 /// Operator *
3637 
3639 {
3640  TH2F hnew = h1;
3641  hnew.Scale(c1);
3642  hnew.SetDirectory(0);
3643  return hnew;
3644 }
3645 
3646 
3647 ////////////////////////////////////////////////////////////////////////////////
3648 /// Operator *
3649 
3651 {
3652  TH2F hnew = h1;
3653  hnew.Scale(c1);
3654  hnew.SetDirectory(0);
3655  return hnew;
3656 }
3657 
3658 
3659 ////////////////////////////////////////////////////////////////////////////////
3660 /// Operator +
3661 
3663 {
3664  TH2F hnew = h1;
3665  hnew.Add(&h2,1);
3666  hnew.SetDirectory(0);
3667  return hnew;
3668 }
3669 
3670 
3671 ////////////////////////////////////////////////////////////////////////////////
3672 /// Operator -
3673 
3675 {
3676  TH2F hnew = h1;
3677  hnew.Add(&h2,-1);
3678  hnew.SetDirectory(0);
3679  return hnew;
3680 }
3681 
3682 
3683 ////////////////////////////////////////////////////////////////////////////////
3684 /// Operator *
3685 
3687 {
3688  TH2F hnew = h1;
3689  hnew.Multiply(&h2);
3690  hnew.SetDirectory(0);
3691  return hnew;
3692 }
3693 
3694 
3695 ////////////////////////////////////////////////////////////////////////////////
3696 /// Operator /
3697 
3699 {
3700  TH2F hnew = h1;
3701  hnew.Divide(&h2);
3702  hnew.SetDirectory(0);
3703  return hnew;
3704 }
3705 
3706 
3707 //______________________________________________________________________________
3708 // TH2D methods
3709 // TH2D a 2-D histogram with eight bytes per cell (double)
3710 //______________________________________________________________________________
3711 
3712 ClassImp(TH2D);
3713 
3714 
3715 ////////////////////////////////////////////////////////////////////////////////
3716 /// Constructor.
3717 
3719 {
3720  SetBinsLength(9);
3721  if (fgDefaultSumw2) Sumw2();
3722 }
3723 
3724 
3725 ////////////////////////////////////////////////////////////////////////////////
3726 /// Destructor.
3727 
3729 {
3730 }
3731 
3732 
3733 ////////////////////////////////////////////////////////////////////////////////
3734 /// Constructor.
3735 
3736 TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3737  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3738  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ylow,yup)
3739 {
3741  if (fgDefaultSumw2) Sumw2();
3742 
3743  if (xlow >= xup || ylow >= yup) SetBuffer(fgBufferSize);
3744 }
3745 
3746 
3747 ////////////////////////////////////////////////////////////////////////////////
3748 /// Constructor.
3749 
3750 TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3751  ,Int_t nbinsy,Double_t ylow,Double_t yup)
3752  :TH2(name,title,nbinsx,xbins,nbinsy,ylow,yup)
3753 {
3755  if (fgDefaultSumw2) Sumw2();
3756 }
3757 
3758 
3759 ////////////////////////////////////////////////////////////////////////////////
3760 /// Constructor.
3761 
3762 TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,Double_t xlow,Double_t xup
3763  ,Int_t nbinsy,const Double_t *ybins)
3764  :TH2(name,title,nbinsx,xlow,xup,nbinsy,ybins)
3765 {
3767  if (fgDefaultSumw2) Sumw2();
3768 }
3769 
3770 
3771 ////////////////////////////////////////////////////////////////////////////////
3772 /// Constructor.
3773 
3774 TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Double_t *xbins
3775  ,Int_t nbinsy,const Double_t *ybins)
3776  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3777 {
3779  if (fgDefaultSumw2) Sumw2();
3780 }
3781 
3782 
3783 ////////////////////////////////////////////////////////////////////////////////
3784 /// Constructor.
3785 
3786 TH2D::TH2D(const char *name,const char *title,Int_t nbinsx,const Float_t *xbins
3787  ,Int_t nbinsy,const Float_t *ybins)
3788  :TH2(name,title,nbinsx,xbins,nbinsy,ybins)
3789 {
3791  if (fgDefaultSumw2) Sumw2();
3792 }
3793 
3794 
3795 ////////////////////////////////////////////////////////////////////////////////
3796 /// Constructor.
3797 
3799 :TH2("TMatrixDBase","",m.GetNcols(),m.GetColLwb(),1+m.GetColUpb(),m.GetNrows(),m.GetRowLwb(),1+m.GetRowUpb())
3800 {
3802  Int_t ilow = m.GetRowLwb();
3803  Int_t iup = m.GetRowUpb();
3804  Int_t jlow = m.GetColLwb();
3805  Int_t jup = m.GetColUpb();
3806  for (Int_t i=ilow;i<=iup;i++) {
3807  for (Int_t j=jlow;j<=jup;j++) {
3808  SetBinContent(j-jlow+1,i-ilow+1,m(i,j));
3809  }
3810  }
3811  if (fgDefaultSumw2) Sumw2();
3812 }
3813 
3814 
3815 ////////////////////////////////////////////////////////////////////////////////
3816 /// Copy constructor.
3817 
3818 TH2D::TH2D(const TH2D &h2d) : TH2(), TArrayD()
3819 {
3820  ((TH2D&)h2d).Copy(*this);
3821 }
3822 
3823 
3824 ////////////////////////////////////////////////////////////////////////////////
3825 /// Copy.
3826 
3827 void TH2D::Copy(TObject &newth2) const
3828 {
3829  TH2::Copy((TH2D&)newth2);
3830 }
3831 
3832 
3833 ////////////////////////////////////////////////////////////////////////////////
3834 /// Reset this histogram: contents, errors, etc.
3835 
3836 void TH2D::Reset(Option_t *option)
3837 {
3838  TH2::Reset(option);
3839  TArrayD::Reset();
3840 }
3841 
3842 
3843 ////////////////////////////////////////////////////////////////////////////////
3844 /// Set total number of bins including under/overflow
3845 /// Reallocate bin contents array
3846 
3848 {
3849  if (n < 0) n = (fXaxis.GetNbins()+2)*(fYaxis.GetNbins()+2);
3850  fNcells = n;
3851  TArrayD::Set(n);
3852 }
3853 
3854 
3855 ////////////////////////////////////////////////////////////////////////////////
3856 /// Stream an object of class TH2D.
3857 
3858 void TH2D::Streamer(TBuffer &R__b)
3859 {
3860  if (R__b.IsReading()) {
3861  UInt_t R__s, R__c;
3862  Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
3863  if (R__v > 2) {
3864  R__b.ReadClassBuffer(TH2D::Class(), this, R__v, R__s, R__c);
3865  return;
3866  }
3867  //====process old versions before automatic schema evolution
3868  if (R__v < 2) {
3869  R__b.ReadVersion();
3870  TH1::Streamer(R__b);
3871  TArrayD::Streamer(R__b);
3872  R__b.ReadVersion();
3873  R__b >> fScalefactor;
3874  R__b >> fTsumwy;
3875  R__b >> fTsumwy2;
3876  R__b >> fTsumwxy;
3877  } else {
3878  TH2::Streamer(R__b);
3879  TArrayD::Streamer(R__b);
3880  R__b.CheckByteCount(R__s, R__c, TH2D::IsA());
3881  }
3882  //====end of old versions
3883 
3884  } else {
3885  R__b.WriteClassBuffer(TH2D::Class(),this);
3886  }
3887 }
3888 
3889 
3890 ////////////////////////////////////////////////////////////////////////////////
3891 /// Operator =
3892 
3894 {
3895  if (this != &h1) ((TH2D&)h1).Copy(*this);
3896  return *this;
3897 }
3898 
3899 
3900 
3901 ////////////////////////////////////////////////////////////////////////////////
3902 /// Operator *
3903 
3905 {
3906  TH2D hnew = h1;
3907  hnew.Scale(c1);
3908  hnew.SetDirectory(0);
3909  return hnew;
3910 }
3911 
3912 
3913 ////////////////////////////////////////////////////////////////////////////////
3914 /// Operator +
3915 
3917 {
3918  TH2D hnew = h1;
3919  hnew.Add(&h2,1);
3920  hnew.SetDirectory(0);
3921  return hnew;
3922 }
3923 
3924 
3925 ////////////////////////////////////////////////////////////////////////////////
3926 /// Operator -
3927 
3929 {
3930  TH2D hnew = h1;
3931  hnew.Add(&h2,-1);
3932  hnew.SetDirectory(0);
3933  return hnew;
3934 }
3935 
3936 
3937 ////////////////////////////////////////////////////////////////////////////////
3938 /// Operator *
3939 
3941 {
3942  TH2D hnew = h1;
3943  hnew.Multiply(&h2);
3944  hnew.SetDirectory(0);
3945  return hnew;
3946 }
3947 
3948 
3949 ////////////////////////////////////////////////////////////////////////////////
3950 /// Operator /
3951 
3953 {
3954  TH2D hnew = h1;
3955  hnew.Divide(&h2);
3956  hnew.SetDirectory(0);
3957  return hnew;
3958 }
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3847
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
TH1D * QuantilesX(Double_t prob=0.5, const char *name="_qx") const
Compute the X distribution of quantiles in the other variable Y name is the name of the returned hist...
Definition: TH2.cxx:2386
Bool_t IsReading() const
Definition: TBuffer.h:83
virtual Float_t GetTickLength() const
Definition: TAttAxis.h:44
virtual Int_t GetNcells() const
Definition: TH1.h:294
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition: TH1.cxx:6101
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3251
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH2.cxx:3070
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
Definition: TH1.cxx:4210
virtual void Paint(Option_t *option="")
Control routine to paint any kind of histograms.
Definition: TH1.cxx:5692
An array of TObjects.
Definition: TObjArray.h:37
virtual void SetParameters(const Double_t *params)
Definition: TF1.h:628
float xmin
Definition: THbookFile.cxx:93
virtual void FillRandom(const char *fname, Int_t ntimes=5000)
Fill histogram following distribution in function fname.
Definition: TH2.cxx:597
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition: TObject.cxx:854
Double_t Floor(Double_t x)
Definition: TMath.h:702
void Set(Int_t n)
Set size of this array to n chars.
Definition: TArrayC.cxx:105
friend TH2D operator+(TH2D &h1, TH2D &h2)
Operator +.
Definition: TH2.cxx:3916
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition: TAxis.cxx:444
virtual void GetRandom2(Double_t &x, Double_t &y)
Return 2 random numbers along axis x and y distributed according the cell-contents of a 2-dim histogr...
Definition: TH2.cxx:1090
long long Long64_t
Definition: RtypesCore.h:69
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
Definition: TH2.cxx:177
Int_t GetRowLwb() const
Definition: TMatrixTBase.h:120
auto * m
Definition: textangle.C:8
void Copy(TArrayI &array) const
Definition: TArrayI.h:42
Stat_t GetSum() const
Definition: TArrayD.h:46
short Style_t
Definition: RtypesCore.h:76
friend TH2F operator/(TH2F &h1, TH2F &h2)
Operator /.
Definition: TH2.cxx:3698
Double_t Log(Double_t x)
Definition: TMath.h:759
short Version_t
Definition: RtypesCore.h:61
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition: TH2.cxx:2366
static Bool_t fgDefaultSumw2
!flag to call TH1::Sumw2 automatically at histogram creation time
Definition: TH1.h:115
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
Definition: TH1.cxx:4231
Collectable string class.
Definition: TObjString.h:28
float Float_t
Definition: RtypesCore.h:53
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
Definition: TH1.cxx:8231
friend TH2C operator/(TH2C &h1, TH2C &h2)
Operator /.
Definition: TH2.cxx:2961
virtual Float_t GetLabelOffset() const
Definition: TAttAxis.h:40
Short_t * fArray
Definition: TArrayS.h:30
const char Option_t
Definition: RtypesCore.h:62
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition: TAxis.cxx:504
Double_t KolmogorovProb(Double_t z)
return c1
Definition: legend1.C:41
void Reset()
Definition: TArrayD.h:47
float ymin
Definition: THbookFile.cxx:93
friend TH2C operator+(TH2C &h1, TH2C &h2)
Operator +.
Definition: TH2.cxx:2925
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754
Definition: TMath.h:900
friend TH2D operator-(TH2D &h1, TH2D &h2)
Operator -.
Definition: TH2.cxx:3928
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition: TString.h:687
TAxis fYaxis
Y axis descriptor.
Definition: TH1.h:88
TH1D * ProjectionY(const char *name="_py", Int_t firstxbin=0, Int_t lastxbin=-1, Option_t *option="") const
Project a 2-D histogram into a 1-D histogram along Y.
Definition: TH2.cxx:2357
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition: TH1.cxx:7239
Bool_t GetStatOverflowsBehaviour() const
Definition: TH1.h:148
virtual TH2 * RebinY(Int_t ngroup=2, const char *newname="")
Rebin only the Y axis see Rebin2D.
Definition: TH2.cxx:1540
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition: TH1.cxx:8061
Double_t fScalefactor
Definition: TH2.h:33
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
friend TH2I operator-(TH2I &h1, TH2I &h2)
Operator -.
Definition: TH2.cxx:3410
virtual Color_t GetAxisColor() const
Definition: TAttAxis.h:37
TH2C()
Constructor.
Definition: TH2.cxx:2727
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Definition: TAttAxis.cxx:173
virtual Int_t BufferFill(Double_t x, Double_t y, Double_t w)
accumulate arguments in buffer.
Definition: TH2.cxx:251
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3111
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4770
fill
Definition: fit1_py.py:6
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
Definition: TAttAxis.cxx:229
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum=0)
Compute Quantiles for this histogram Quantile x_q of a probability distribution Function F is defined...
Definition: TH1.cxx:4322
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
Definition: TF1.cxx:3425
void ToUpper()
Change string to upper case.
Definition: TString.cxx:1113
Buffer base class used for serializing objects.
Definition: TBuffer.h:40
TH1D * ProjectionX(const char *name="_px", Int_t firstybin=0, Int_t lastybin=-1, Option_t *option="") const
Project a 2-D histogram into a 1-D histogram along X.
Definition: TH2.cxx:2317
TH2I()
Constructor.
Definition: TH2.cxx:3235
virtual Int_t MakeCuts(char *cutsopt)=0
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss)=0
#define gROOT
Definition: TROOT.h:410
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition: TH1.cxx:6930
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition: TString.h:634
virtual ~TH2D()
Destructor.
Definition: TH2.cxx:3728
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:172
Basic string class.
Definition: TString.h:131
virtual TH1D * DoQuantiles(bool onX, const char *name, Double_t prob) const
Implementation of quantiles for x or y.
Definition: TH2.cxx:2408
virtual Double_t GetCorrelationFactor(Int_t axis1=1, Int_t axis2=2) const
Return correlation factor between axis1 and axis2.
Definition: TH2.cxx:1040
virtual void GetRange(Double_t &xmin, Double_t &ymin, Double_t &xmax, Double_t &ymax) const
Return range of a 2-D function.
Definition: TF2.cxx:579
2-D histogram with a byte per channel (see TH1 documentation)
Definition: TH2.h:133
Array of floats (32 bits per element).
Definition: TArrayF.h:27
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Definition: TAttAxis.cxx:322
#define f(i)
Definition: RSha256.hxx:104
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
Definition: TH2.cxx:1202
void ToLower()
Change string to lower-case.
Definition: TString.cxx:1100
int Int_t
Definition: RtypesCore.h:41
virtual ~TH2()
Destructor.
Definition: TH2.cxx:164
bool Bool_t
Definition: RtypesCore.h:59
friend TH2C operator*(Float_t c1, TH2C &h1)
Operator *.
Definition: TH2.cxx:2913
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
Definition: TF1.cxx:1817
TArrayD fSumw2
Array of sum of squares of weights.
Definition: TH1.h:101
friend TH2I operator/(TH2I &h1, TH2I &h2)
Operator /.
Definition: TH2.cxx:3434
void Copy(TArrayC &array) const
Definition: TArrayC.h:42
virtual Float_t GetLabelSize() const
Definition: TAttAxis.h:41
virtual Bool_t IsInside(Int_t x, Int_t y)=0
void Reset()
Definition: TArrayF.h:47
Profile Histogram.
Definition: TProfile.h:32
virtual Int_t FindGoodLimits(TH1 *h, Double_t xmin, Double_t xmax)
Compute the best axis limits for the X axis.
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:2837
virtual void SetShowProjectionY(Int_t nbins=1)
When the mouse is moved in a pad containing a 2-d view of this histogram a second canvas shows the pr...
Definition: TH2.cxx:2532
TH2F()
Constructor.
Definition: TH2.cxx:3454
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels The distance is expressed in per cent of the pad width...
Definition: TAttAxis.cxx:193
virtual Double_t Integral(Double_t ax, Double_t bx, Double_t ay, Double_t by, Double_t epsrel=1.e-6)
Return Integral of a 2d function in range [ax,bx],[ay,by] with desired relative accuracy (default val...
Definition: TF2.cxx:644
friend TH2I operator*(Float_t c1, TH2I &h1)
Operator *.
Definition: TH2.cxx:3386
Short_t Abs(Short_t d)
Definition: TMathBase.h:108
virtual TVirtualPad * cd(Int_t subpadnumber=0)=0
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:2857
friend TH2D operator/(TH2D &h1, TH2D &h2)
Operator /.
Definition: TH2.cxx:3952
Double_t Prob(Double_t chi2, Int_t ndf)
friend TH2I operator+(TH2I &h1, TH2I &h2)
Operator +.
Definition: TH2.cxx:3398
Array of integers (32 bits per element).
Definition: TArrayI.h:27
void Reset(Char_t val=0)
Definition: TArrayC.h:47
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual void SetBuffer(Int_t buffersize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Definition: TH1.cxx:7760
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition: TH1.h:96
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
Definition: TH1.cxx:6125
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH1.cxx:6583
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Definition: TAxis.cxx:514
virtual void SetLabelFont(Style_t font=62)
Set labels&#39; font.
Definition: TAttAxis.cxx:183
friend TH2S operator/(TH2S &h1, TH2S &h2)
Operator /.
Definition: TH2.cxx:3215
virtual Style_t GetMarkerStyle() const
Return the marker style.
Definition: TAttMarker.h:32
virtual Style_t GetTitleFont() const
Definition: TAttAxis.h:46
virtual Int_t GetDimension() const
Definition: TH1.h:277
friend TH2C operator-(TH2C &h1, TH2C &h2)
Operator -.
Definition: TH2.cxx:2937
double sqrt(double)
Double_t GetXmin() const
Definition: TAxis.h:133
static const double x2[5]
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
TH2S()
Constructor.
Definition: TH2.cxx:2981
virtual void Reset(Option_t *option="")
Reset contents of a Profile histogram.
Definition: TProfile.cxx:1517
Double_t x[n]
Definition: legend1.C:17
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
Definition: TString.cxx:2286
TH2F & operator=(const TH2F &h1)
Operator =.
Definition: TH2.cxx:3628
void Class()
Definition: Class.C:29
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
Definition: THashList.h:34
Int_t GetColLwb() const
Definition: TMatrixTBase.h:123
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum2::Search the function finds peaks in this histogram where the width is > sigma...
Definition: TH2.cxx:2561
THashList * GetLabels() const
Definition: TAxis.h:117
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3091
virtual TArrayD * GetBinSumw2()
Definition: TProfile.h:109
virtual void SetShowProjectionX(Int_t nbins=1)
When the mouse is moved in a pad containing a 2-d view of this histogram a second canvas shows the pr...
Definition: TH2.cxx:2517
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition: TAxis.cxx:464
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition: TAttMarker.h:38
Double_t * fArray
Definition: TArrayD.h:30
TH2S & operator=(const TH2S &h1)
Operator =.
Definition: TH2.cxx:3157
Double_t fTsumwy2
Definition: TH2.h:35
friend TH2F operator-(TH2F &h1, TH2F &h2)
Operator -.
Definition: TH2.cxx:3674
const Double_t sigma
Ssiz_t First(char c) const
Find first occurrence of a character c.
Definition: TString.cxx:487
TH1F * h1
Definition: legend1.C:5
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH1.cxx:1200
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculates from bin cont...
Definition: TH1.cxx:7254
TVirtualPad is an abstract base class for the Pad and Canvas classes.
Definition: TVirtualPad.h:49
void Set(Int_t n)
Set size of this array to n ints.
Definition: TArrayI.cxx:105
virtual void Reset(Option_t *option="")
Reset.
Definition: TH1.cxx:9577
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition: TH1.cxx:8498
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false)
Compute integral (cumulative sum of bins) The result stored in fIntegral is used by the GetRandom fun...
Definition: TH1.cxx:2467
virtual Color_t GetLabelColor() const
Definition: TAttAxis.h:38
short Color_t
Definition: RtypesCore.h:79
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH2.cxx:2816
Double_t fTsumwx
Total Sum of weight*X.
Definition: TH1.h:95
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2), errors are also recalculated.
Definition: TH1.cxx:2729
virtual Int_t GetNdivisions() const
Definition: TAttAxis.h:36
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3345
void Set(Int_t n)
Set size of this array to n shorts.
Definition: TArrayS.cxx:105
virtual Double_t Rndm()
Machine independent random number generator.
Definition: TRandom.cxx:533
virtual void ImportAttributes(const TAxis *axis)
Copy axis attributes to this.
Definition: TAxis.cxx:617
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this 2-d histogram using kernel algorithms similar to the ones used in the ras...
Definition: TH2.cxx:2590
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
Definition: TH2.cxx:695
virtual const char * GetParName(Int_t ipar) const
Definition: TF1.h:513
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Definition: TH1.cxx:6001
virtual Double_t GetBinWithContent2(Double_t c, Int_t &binx, Int_t &biny, Int_t firstxbin=1, Int_t lastxbin=-1, Int_t firstybin=1, Int_t lastybin=-1, Double_t maxdiff=0) const
compute first cell (binx,biny) in the range [firstxbin,lastxbin][firstybin,lastybin] for which diff =...
Definition: TH2.cxx:1012
void Reset()
Definition: TArrayS.h:47
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH2.cxx:2846
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition: TAttLine.h:40
Int_t fN
Definition: TArray.h:38
float ymax
Definition: THbookFile.cxx:93
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:279
void Copy(TArrayF &array) const
Definition: TArrayF.h:42
virtual ~TH2C()
Destructor.
Definition: TH2.cxx:2737
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition: TH2.cxx:3324
Int_t GetLast() const
Return last bin on the axis i.e.
Definition: TAxis.cxx:455
const char * GetTitle() const
Returns title of object.
Definition: TAxis.h:129
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
Class to manage histogram axis.
Definition: TAxis.h:30
virtual void GetStats(Double_t *stats) const
Fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition: TH2.cxx:1143
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2974
Array of shorts (16 bits per element).
Definition: TArrayS.h:27
Int_t GetSize() const
Definition: TArray.h:47
TH2C & operator=(const TH2C &h1)
Operator =.
Definition: TH2.cxx:2903
virtual void FitSlicesX(TF1 *f1=0, Int_t firstybin=0, Int_t lastybin=-1, Int_t cut=0, Option_t *option="QNR", TObjArray *arr=0)
Project slices along X in case of a 2-D histogram, then fit each slice with function f1 and make a hi...
Definition: TH2.cxx:911
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition: TAttFill.h:37
virtual Int_t GetNumberFitPoints() const
Definition: TF1.h:487
2-D histogram with a float per channel (see TH1 documentation)}
Definition: TH2.h:250
Double_t fTsumwxy
Definition: TH2.h:36
Double_t fTsumwy
Definition: TH2.h:34
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition: TObject.cxx:443
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8514
static Int_t fgBufferSize
!default buffer size for automatic histograms
Definition: TH1.h:112
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
Definition: TH1.cxx:5517
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3827
Double_t fEntries
Number of entries.
Definition: TH1.h:92
unsigned int UInt_t
Definition: RtypesCore.h:42
virtual Float_t GetTitleOffset() const
Definition: TAttAxis.h:42
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:880
char * Form(const char *fmt,...)
virtual void Copy(TObject &hnew) const
Copy this histogram structure to newth1.
Definition: TH1.cxx:2580
short Short_t
Definition: RtypesCore.h:35
Int_t Fill(const Double_t *v)
Definition: TProfile.h:54
#define s1(x)
Definition: RSha256.hxx:91
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition: TAttMarker.h:40
TAxis * GetYaxis()
Definition: TH1.h:316
float xmax
Definition: THbookFile.cxx:93
virtual Color_t GetTitleColor() const
Definition: TAttAxis.h:45
Double_t * fIntegral
!Integral of bins used by GetRandom
Definition: TH1.h:108
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Int_t biny1, Int_t biny2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [firstxbin,lastxbin],[firstybin,lastybin] for a 2-D histogra...
Definition: TH2.cxx:1231
A 2-Dim function with parameters.
Definition: TF2.h:29
Int_t GetColUpb() const
Definition: TMatrixTBase.h:124
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:610
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition: TH1.cxx:4672
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
Definition: TAttAxis.cxx:163
TString & String()
Definition: TObjString.h:49
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels The size is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:204
Linear Algebra Package.
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
Definition: TAttAxis.cxx:313
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title The size is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:304
#define h(i)
Definition: RSha256.hxx:106
virtual Double_t RetrieveBinContent(Int_t bin) const
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition: TH1.cxx:8732
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculate a gaussian function with mean and sigma.
Definition: TMath.cxx:448
const Bool_t kFALSE
Definition: RtypesCore.h:88
virtual Color_t GetLineColor() const
Return the line color.
Definition: TAttLine.h:33
TH1D * QuantilesY(Double_t prob=0.5, const char *name="_qy") const
Compute the Y distribution of quantiles in the other variable X name is the name of the returned hist...
Definition: TH2.cxx:2399
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition: TAxis.cxx:279
friend TH2D operator*(Float_t c1, TH2D &h1)
Operator *.
Definition: TH2.cxx:3904
virtual void SetName(const char *name)
Change the name of this histogram.
Definition: TH1.cxx:8254
TString & Remove(Ssiz_t pos)
Definition: TString.h:668
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
virtual Int_t GetSumw2N() const
Definition: TH1.h:309
Double_t GetChisquare() const
Definition: TF1.h:428
#define d(i)
Definition: RSha256.hxx:102
Double_t fTsumw2
Total Sum of squares of weights.
Definition: TH1.h:94
friend TH2F operator+(TH2F &h1, TH2F &h2)
Operator +.
Definition: TH2.cxx:3662
friend TH2S operator*(Float_t c1, TH2S &h1)
Operator *.
Definition: TH2.cxx:3167
TH2D()
Constructor.
Definition: TH2.cxx:3718
virtual TH2 * RebinX(Int_t ngroup=2, const char *newname="")
Rebin only the X axis see Rebin2D.
Definition: TH2.cxx:1530
static const double x1[5]
#define ClassImp(name)
Definition: Rtypes.h:359
TProfile * ProfileY(const char *name="_pfy", Int_t firstxbin=1, Int_t lastxbin=-1, Option_t *option="") const
Project a 2-D histogram into a profile histogram along Y.
Definition: TH2.cxx:2041
TProfile * ProfileX(const char *name="_pfx", Int_t firstybin=1, Int_t lastybin=-1, Option_t *option="") const
Project a 2-D histogram into a profile histogram along X.
Definition: TH2.cxx:1991
TH2I & operator=(const TH2I &h1)
Operator =.
Definition: TH2.cxx:3376
double Double_t
Definition: RtypesCore.h:55
virtual void DoFitSlices(bool onX, TF1 *f1, Int_t firstbin, Int_t lastbin, Int_t cut, Option_t *option, TObjArray *arr)
Definition: TH2.cxx:753
Int_t * fArray
Definition: TArrayI.h:30
Double_t fTsumw
Total Sum of weights.
Definition: TH1.h:93
virtual void SetShowProjection(const char *option, Int_t nbins)=0
virtual void FitSlicesY(TF1 *f1=0, Int_t firstxbin=0, Int_t lastxbin=-1, Int_t cut=0, Option_t *option="QNR", TObjArray *arr=0)
Project slices along Y in case of a 2-D histogram, then fit each slice with function f1 and make a hi...
Definition: TH2.cxx:976
Histogram is forced to be not weighted even when the histogram is filled with weighted different than...
Definition: TH1.h:167
unsigned long ULong_t
Definition: RtypesCore.h:51
int nentries
Definition: THbookFile.cxx:89
Double_t y[n]
Definition: legend1.C:17
virtual void Expand(Int_t newSize)
Expand or shrink the array to newSize elements.
Definition: TObjArray.cxx:386
virtual Color_t GetFillColor() const
Return the fill area color.
Definition: TAttFill.h:30
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:619
The TH1 histogram class.
Definition: TH1.h:56
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
Definition: TRolke.cxx:630
virtual Double_t GetEntries() const
Return the current number of entries.
Definition: TH1.cxx:4185
2-D histogram with a short per channel (see TH1 documentation)
Definition: TH2.h:172
virtual void SetBinLabel(Int_t bin, const char *label)
Set label for bin.
Definition: TAxis.cxx:809
virtual Float_t GetTitleSize() const
Definition: TAttAxis.h:43
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
Definition: TH2.cxx:725
Array of doubles (64 bits per element).
Definition: TArrayD.h:27
friend TH2F operator*(Float_t c1, TH2F &h1)
Operator *.
Definition: TH2.cxx:3638
Bool_t IsNull() const
Definition: TString.h:402
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2), errors are also recalculated.
Definition: TH1.cxx:777
void SetBins(const Int_t *nbins, const Double_t *range)
Definition: TProfile.h:53
Mother of all ROOT objects.
Definition: TObject.h:37
you should not use this method at all Int_t Int_t z
Definition: TRolke.cxx:630
char Char_t
Definition: RtypesCore.h:29
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
Definition: TH2.cxx:2545
virtual ~TH2F()
Destructor.
Definition: TH2.cxx:3464
virtual Int_t GetNpar() const
Definition: TF1.h:465
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Definition: TAxis.cxx:526
virtual Double_t Interpolate(Double_t x)
illegal for a TH2
Definition: TH2.cxx:1240
TVirtualHistPainter * fPainter
!pointer to histogram painter
Definition: TH1.h:109
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3582
virtual ~TH2I()
Destructor.
Definition: TH2.cxx:3245
Int_t fBufferSize
fBuffer size
Definition: TH1.h:104
virtual Double_t GetParameter(Int_t ipar) const
Definition: TF1.h:496
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition: TH1.h:435
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Definition: TH1.cxx:7329
virtual void Copy(TObject &hnew) const
Copy.
Definition: TH2.cxx:3562
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:200
1-Dim function class
Definition: TF1.h:211
Char_t * fArray
Definition: TArrayC.h:30
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition: TH1.cxx:8313
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
Definition: TH1.cxx:2657
TF1 * f1
Definition: legend1.C:11
#define snprintf
Definition: civetweb.c:1351
Int_t fDimension
!Histogram dimension (1, 2 or 3 dim)
Definition: TH1.h:107
THist< 1, double, THistStatContent, THistStatUncertainty > TH1D
Definition: THist.hxx:284
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH2.h:84
#define gPad
Definition: TVirtualPad.h:285
void Reset()
Definition: TArrayI.h:47
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length The length is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:280
#define c(i)
Definition: RSha256.hxx:101
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
Definition: TH2.cxx:3365
virtual Double_t * GetParameters() const
Definition: TF1.h:504
void Set(Int_t n)
Set size of this array to n floats.
Definition: TArrayF.cxx:105
Int_t GetRowUpb() const
Definition: TMatrixTBase.h:121
virtual void SetEntries(Double_t n)
Definition: TH1.h:378
TAxis fXaxis
X axis descriptor.
Definition: TH1.h:87
#define gDirectory
Definition: TDirectory.h:213
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function.
Definition: TF1.cxx:1471
friend TH2S operator+(TH2S &h1, TH2S &h2)
Operator +.
Definition: TH2.cxx:3179
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content.
Definition: TH2.cxx:2500
virtual Color_t GetMarkerColor() const
Return the marker color.
Definition: TAttMarker.h:31
virtual Int_t GetNbinsX() const
Definition: TH1.h:291
Double_t Sqrt(Double_t x)
Definition: TMath.h:690
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH2.cxx:2484
Int_t GetNbins() const
Definition: TAxis.h:121
2-D histogram with an int per channel (see TH1 documentation)}
Definition: TH2.h:211
virtual void Sumw2(Bool_t flag=kTRUE)
Create/delete structure to store sum of squares of weights per bin.
Definition: TProfile.cxx:1745
virtual const char * GetName() const
Returns name of object.
Definition: TObject.cxx:357
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition: TAxis.cxx:717
virtual Int_t GetBin(Int_t binx, Int_t biny, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition: TH2.cxx:981
Int_t Fill(Double_t)
Invalid Fill method.
Definition: TH2.cxx:292
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition: TNamed.cxx:164
TH2()
Constructor.
Definition: TH2.cxx:60
Double_t * fBuffer
[fBufferSize] entry buffer
Definition: TH1.h:105
virtual ~TH2S()
Destructor.
Definition: TH2.cxx:2991
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition: TH1.cxx:3695
friend TH2S operator-(TH2S &h1, TH2S &h2)
Operator -.
Definition: TH2.cxx:3191
const Bool_t kTRUE
Definition: RtypesCore.h:87
virtual void UpdateBinContent(Int_t bin, Double_t content)
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Definition: TH1.cxx:8742
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
Definition: TH1.cxx:6984
void Set(Int_t n)
Set size of this array to n doubles.
Definition: TArrayD.cxx:106
Double_t GetXmax() const
Definition: TAxis.h:134
void Copy(TArrayD &array) const
Definition: TArrayD.h:42
const Int_t n
Definition: legend1.C:16
virtual TProfile * DoProfile(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
Definition: TH2.cxx:1768
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Definition: TMath.h:1221
char name[80]
Definition: TGX11.cxx:109
const TArrayD * GetXbins() const
Definition: TAxis.h:130
virtual void FillN(Int_t, const Double_t *, const Double_t *, Int_t)
Fill this histogram with an array x and weights w.
Definition: TH2.h:74
virtual TH2 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=0)
Override TH1::Rebin as TH2::RebinX Rebinning in variable binning as for TH1 is not allowed If a non-n...
Definition: TH2.cxx:1551
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:866
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
Definition: TH1.h:315
virtual Style_t GetLabelFont() const
Definition: TAttAxis.h:39
virtual TH2 * Rebin2D(Int_t nxgroup=2, Int_t nygroup=2, const char *newname="")
Rebin this histogram grouping nxgroup/nygroup bins along the xaxis/yaxis together.
Definition: TH2.cxx:1586
void Copy(TArrayS &array) const
Definition: TArrayS.h:42
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between THIS histogram and h2, using Kolmogorov test...
Definition: TH2.cxx:1358
virtual Version_t ReadVersion(UInt_t *start=0, UInt_t *bcnt=0, const TClass *cl=0)=0
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48
virtual Int_t GetNbinsY() const
Definition: TH1.h:292
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition: TH1.cxx:8356
virtual TH1D * DoProjection(bool onX, const char *name, Int_t firstbin, Int_t lastbin, Option_t *option) const
Internal (protected) method for performing projection on the X or Y axis called by ProjectionX or Pro...
Definition: TH2.cxx:2051
TH2D & operator=(const TH2D &h1)
Operator =.
Definition: TH2.cxx:3893
Int_t fNcells
number of bins(1D), cells (2D) +U/Overflows
Definition: TH1.h:86
virtual Double_t GetCovariance(Int_t axis1=1, Int_t axis2=2) const
Return covariance between axis1 and axis2.
Definition: TH2.cxx:1058
2-D histogram with a double per channel (see TH1 documentation)}
Definition: TH2.h:291
const char * Data() const
Definition: TString.h:364
Array of chars or bytes (8 bits per element).
Definition: TArrayC.h:27