33 #ifndef ROOT_TMVA_MethodCuts 34 #define ROOT_TMVA_MethodCuts 68 const TString& theOption =
"MC:150:10000:");
std::vector< Double_t > * fRmsS
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
cut evaluation: returns 1.0 if event passed, 0.0 otherwise
void GetHelpMessage() const
get help message text
void WriteMonitoringHistosToFile(void) const
write histograms and PDFs to file for monitoring purposes
Double_t ComputeEstimator(std::vector< Double_t > &)
returns estimator for "cut fitness" used by GA.
void TestClassification()
nothing to test
Double_t GetSignificance(void) const
compute significance of mean difference
MethodCuts(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="MC:150:10000:")
standard constructor
void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
void SetTestSignalEfficiency(Double_t effS)
void MatchParsToCuts(const std::vector< Double_t > &, Double_t *, Double_t *)
translates parameters into cuts
Virtual base Class for all MVA method.
std::vector< TH1 * > * fVarHistS
const Ranking * CreateRanking()
Ranking for variables in method (implementation)
Double_t GetCuts(Double_t effS, std::vector< Double_t > &cutMin, std::vector< Double_t > &cutMax) const
retrieve cut values for given signal efficiency
std::vector< PDF * > * fVarPdfS
std::vector< TH1 * > * fVarHistS_smooth
Double_t EstimatorFunction(std::vector< Double_t > &)
returns estimator for "cut fitness" used by GA
std::vector< Double_t > * fMeanB
#define ClassDef(name, id)
This is the base class for the ROOT Random number generators.
std::vector< EFitParameters > * fFitParams
void Init(void)
default initialisation called by all constructors
void CreateVariablePDFs(void)
for PDF method: create efficiency reference histograms and PDFs
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
BinarySearchTree * fBinaryTreeS
void GetEffsfromSelection(Double_t *cutMin, Double_t *cutMax, Double_t &effS, Double_t &effB)
compute signal and background efficiencies from event counting for given cut sample ...
void AddWeightsXMLTo(void *parent) const
create XML description for LD classification and regression (for arbitrary number of output classes/t...
std::vector< TH1 * > * fVarHistB_smooth
Class that contains all the data information.
void MatchCutsToPars(std::vector< Double_t > &, Double_t *, Double_t *)
translates cuts into parameters
PDF wrapper for histograms; uses user-defined spline interpolation.
std::vector< PDF * > * fVarPdfB
void Train(void)
training method: here the cuts are optimised for the training sample
std::vector< Int_t > * fRangeSign
void ReadWeightsFromXML(void *wghtnode)
read coefficients from xml weight file
void GetEffsfromPDFs(Double_t *cutMin, Double_t *cutMax, Double_t &effS, Double_t &effB)
compute signal and background efficiencies from PDFs for given cut sample
void DeclareOptions()
define the options (their key words) that can be set in the option string.
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular ...
EFitMethodType fFitMethod
std::vector< Double_t > * fMeanS
void ReadWeightsFromStream(std::istream &i)
read the cuts from stream
Double_t GetEfficiency(const TString &, Types::ETreeType, Double_t &)
Overloaded function to create background efficiency (rejection) versus signal efficiency plot (first ...
std::vector< Double_t > * fRmsB
Double_t GetRarity(Double_t, Types::ESBType) const
compute rarity: where PDF(x) is the PDF of the classifier's signal or background distribution ...
Interface for all concrete MVA method implementations.
Abstract ClassifierFactory template that handles arbitrary types.
virtual ~MethodCuts(void)
destructor
Double_t GetSeparation(TH1 *, TH1 *) const
compute "separation" defined as
static const Double_t fgMaxAbsCutVal
void ProcessOptions()
process user options.
void PrintCuts(Double_t effS) const
print cuts
A TTree object has a header with a name and a title.
Double_t GetSeparation(PDF *=0, PDF *=0) const
compute "separation" defined as
Double_t GetmuTransform(TTree *)
Interface for a fitter 'target'.
Double_t GetTrainingEfficiency(const TString &)
Overloaded function to create background efficiency (rejection) versus signal efficiency plot (first ...
virtual void ReadWeightsFromStream(std::istream &)=0
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Cuts can only handle classification with 2 classes.
std::vector< Interval * > fCutRange
static MethodCuts * DynamicCast(IMethod *method)
BinarySearchTree * fBinaryTreeB
A simple Binary search tree including a volume search method.
std::vector< TH1 * > * fVarHistB