Logo ROOT   6.10/09
Reference Guide
testPyKerasMulticlass.C
Go to the documentation of this file.
1 #include <iostream>
2 
3 #include "TString.h"
4 #include "TFile.h"
5 #include "TTree.h"
6 #include "TSystem.h"
7 #include "TROOT.h"
8 #include "TMVA/Factory.h"
9 #include "TMVA/Reader.h"
10 #include "TMVA/DataLoader.h"
11 #include "TMVA/PyMethodBase.h"
12 
14 from keras.models import Sequential\n\
15 from keras.layers.core import Dense, Activation\n\
16 from keras.optimizers import Adam\n\
17 \n\
18 model = Sequential()\n\
19 model.add(Dense(64, activation=\"relu\", input_dim=4))\n\
20 model.add(Dense(4, activation=\"softmax\"))\n\
21 model.compile(loss=\"categorical_crossentropy\", optimizer=Adam(), metrics=[\"accuracy\",])\n\
22 model.save(\"kerasModelMulticlass.h5\")\n";
23 
25  // Get data file
26  std::cout << "Get test data..." << std::endl;
27  TString fname = "./tmva_example_multiple_background.root";
28  if (gSystem->AccessPathName(fname)){ // file does not exist in local directory
29  std::cout << "Create multiclass test data..." << std::endl;
30  TString createDataMacro = TString(gROOT->GetTutorialsDir()) + "/tmva/createData.C";
31  gROOT->ProcessLine(TString::Format(".L %s",createDataMacro.Data()));
32  gROOT->ProcessLine("create_MultipleBackground(200)");
33  std::cout << "Created " << fname << " for tests of the multiclass features" << std::endl;
34  }
35  TFile *input = TFile::Open(fname);
36 
37  // Build model from python file
38  std::cout << "Generate keras model..." << std::endl;
39  UInt_t ret;
40  ret = gSystem->Exec("echo '"+pythonSrc+"' > generateKerasModelMulticlass.py");
41  if(ret!=0){
42  std::cout << "[ERROR] Failed to write python code to file" << std::endl;
43  return 1;
44  }
45  ret = gSystem->Exec("python generateKerasModelMulticlass.py");
46  if(ret!=0){
47  std::cout << "[ERROR] Failed to generate model using python" << std::endl;
48  return 1;
49  }
50 
51  // Setup PyMVA and factory
52  std::cout << "Setup TMVA..." << std::endl;
54  TFile* outputFile = TFile::Open("ResultsTestPyKerasMulticlass.root", "RECREATE");
55  TMVA::Factory *factory = new TMVA::Factory("testPyKerasMulticlass", outputFile,
56  "!V:Silent:Color:!DrawProgressBar:AnalysisType=multiclass");
57 
58  // Load data
59  TMVA::DataLoader *dataloader = new TMVA::DataLoader("datasetTestPyKerasMulticlass");
60 
61  TTree *signal = (TTree*)input->Get("TreeS");
62  TTree *background0 = (TTree*)input->Get("TreeB0");
63  TTree *background1 = (TTree*)input->Get("TreeB1");
64  TTree *background2 = (TTree*)input->Get("TreeB2");
65  dataloader->AddTree(signal, "Signal");
66  dataloader->AddTree(background0, "Background_0");
67  dataloader->AddTree(background1, "Background_1");
68  dataloader->AddTree(background2, "Background_2");
69 
70  dataloader->AddVariable("var1");
71  dataloader->AddVariable("var2");
72  dataloader->AddVariable("var3");
73  dataloader->AddVariable("var4");
74 
75  dataloader->PrepareTrainingAndTestTree("",
76  "SplitMode=Random:NormMode=NumEvents:!V");
77 
78  // Book and train method
79  factory->BookMethod(dataloader, TMVA::Types::kPyKeras, "PyKeras",
80  "!H:!V:VarTransform=D,G:FilenameModel=kerasModelMulticlass.h5:FilenameTrainedModel=trainedKerasModelMulticlass.h5:NumEpochs=20:BatchSize=32:SaveBestOnly=false:Verbose=0");
81  std::cout << "Train model..." << std::endl;
82  factory->TrainAllMethods();
83 
84  // Clean-up
85  delete factory;
86  delete dataloader;
87  delete outputFile;
88 
89  // Setup reader
90  UInt_t numEvents = 100;
91  std::cout << "Run reader and classify " << numEvents << " events..." << std::endl;
92  TMVA::Reader *reader = new TMVA::Reader("!Color:Silent");
93  Float_t vars[4];
94  reader->AddVariable("var1", vars+0);
95  reader->AddVariable("var2", vars+1);
96  reader->AddVariable("var3", vars+2);
97  reader->AddVariable("var4", vars+3);
98  reader->BookMVA("PyKeras", "datasetTestPyKerasMulticlass/weights/testPyKerasMulticlass_PyKeras.weights.xml");
99 
100  // Get mean response of method on signal and background events
101  signal->SetBranchAddress("var1", vars+0);
102  signal->SetBranchAddress("var2", vars+1);
103  signal->SetBranchAddress("var3", vars+2);
104  signal->SetBranchAddress("var4", vars+3);
105 
106  background0->SetBranchAddress("var1", vars+0);
107  background0->SetBranchAddress("var2", vars+1);
108  background0->SetBranchAddress("var3", vars+2);
109  background0->SetBranchAddress("var4", vars+3);
110 
111  background1->SetBranchAddress("var1", vars+0);
112  background1->SetBranchAddress("var2", vars+1);
113  background1->SetBranchAddress("var3", vars+2);
114  background1->SetBranchAddress("var4", vars+3);
115 
116  background2->SetBranchAddress("var1", vars+0);
117  background2->SetBranchAddress("var2", vars+1);
118  background2->SetBranchAddress("var3", vars+2);
119  background2->SetBranchAddress("var4", vars+3);
120 
121  Float_t meanMvaSignal = 0;
122  Float_t meanMvaBackground0 = 0;
123  Float_t meanMvaBackground1 = 0;
124  Float_t meanMvaBackground2 = 0;
125  for(UInt_t i=0; i<numEvents; i++){
126  signal->GetEntry(i);
127  meanMvaSignal += reader->EvaluateMulticlass("PyKeras")[0];
128  background0->GetEntry(i);
129  meanMvaBackground0 += reader->EvaluateMulticlass("PyKeras")[1];
130  background1->GetEntry(i);
131  meanMvaBackground1 += reader->EvaluateMulticlass("PyKeras")[2];
132  background2->GetEntry(i);
133  meanMvaBackground2 += reader->EvaluateMulticlass("PyKeras")[3];
134  }
135  meanMvaSignal = meanMvaSignal/float(numEvents);
136  meanMvaBackground0 = meanMvaBackground0/float(numEvents);
137  meanMvaBackground1 = meanMvaBackground1/float(numEvents);
138  meanMvaBackground2 = meanMvaBackground2/float(numEvents);
139 
140  // Check whether the response is obviously better than guessing
141  std::cout << "Mean MVA response on signal: " << meanMvaSignal << std::endl;
142  if(meanMvaSignal < 0.3){
143  std::cout << "[ERROR] Mean response on signal is " << meanMvaSignal << " (<0.3)" << std::endl;
144  return 1;
145  }
146  std::cout << "Mean MVA response on background 0: " << meanMvaBackground0 << std::endl;
147  if(meanMvaBackground0 < 0.3){
148  std::cout << "[ERROR] Mean response on background 0 is " << meanMvaBackground0 << " (<0.3)" << std::endl;
149  return 1;
150  }
151  std::cout << "Mean MVA response on background 1: " << meanMvaBackground1 << std::endl;
152  if(meanMvaBackground0 < 0.3){
153  std::cout << "[ERROR] Mean response on background 1 is " << meanMvaBackground1 << " (<0.3)" << std::endl;
154  return 1;
155  }
156  std::cout << "Mean MVA response on background 2: " << meanMvaBackground2 << std::endl;
157  if(meanMvaBackground0 < 0.3){
158  std::cout << "[ERROR] Mean response on background 2 is " << meanMvaBackground2 << " (<0.3)" << std::endl;
159  return 1;
160  }
161 
162  return 0;
163 }
164 
165 int main(){
166  int err = testPyKerasMulticlass();
167  return err;
168 }
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition: TSystem.cxx:1272
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
Definition: Factory.cxx:343
float Float_t
Definition: RtypesCore.h:53
void AddVariable(const TString &expression, Float_t *)
Add a float variable or expression to the reader.
Definition: Reader.cxx:308
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Definition: TFile.h:46
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
#define gROOT
Definition: TROOT.h:375
virtual Int_t GetEntry(Long64_t entry=0, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
Definition: TTree.cxx:5321
Basic string class.
Definition: TString.h:129
void TrainAllMethods()
Iterates through all booked methods and calls training.
Definition: Factory.cxx:1017
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
Definition: DataLoader.cxx:491
static void PyInitialize()
Initialize Python interpreter.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=1, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3909
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
Definition: TString.cxx:2345
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=0)
Change branch address, dealing with clone trees properly.
Definition: TTree.cxx:7873
TString pythonSrc
IMethod * BookMVA(const TString &methodTag, const TString &weightfile)
read method name from weight file
Definition: Reader.cxx:377
int testPyKerasMulticlass()
R__EXTERN TSystem * gSystem
Definition: TSystem.h:539
unsigned int UInt_t
Definition: RtypesCore.h:42
int main()
virtual Int_t Exec(const char *shellcmd)
Execute a command.
Definition: TSystem.cxx:660
This is the main MVA steering class.
Definition: Factory.h:81
void AddTree(TTree *tree, const TString &className, Double_t weight=1.0, const TCut &cut="", Types::ETreeType tt=Types::kMaxTreeType)
Definition: DataLoader.cxx:357
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
Definition: DataLoader.cxx:629
The Reader class serves to use the MVAs in a specific analysis context.
Definition: Reader.h:63
A TTree object has a header with a name and a title.
Definition: TTree.h:78
const std::vector< Float_t > & EvaluateMulticlass(const TString &methodTag, Double_t aux=0)
evaluates MVA for given set of input variables
Definition: Reader.cxx:647
const char * Data() const
Definition: TString.h:347