Logo ROOT   6.10/09
Reference Guide
testPyAdaBoostMulticlass.C
Go to the documentation of this file.
1 #include <iostream>
2 
3 #include "TString.h"
4 #include "TFile.h"
5 #include "TTree.h"
6 #include "TSystem.h"
7 #include "TROOT.h"
8 #include "TMVA/Factory.h"
9 #include "TMVA/Reader.h"
10 #include "TMVA/DataLoader.h"
11 #include "TMVA/PyMethodBase.h"
12 
14  // Get data file
15  std::cout << "Get test data..." << std::endl;
16  TString fname = "./tmva_example_multiple_background.root";
17  if (gSystem->AccessPathName(fname)){ // file does not exist in local directory
18  std::cout << "Create multiclass test data..." << std::endl;
19  TString createDataMacro = TString(gROOT->GetTutorialsDir()) + "/tmva/createData.C";
20  gROOT->ProcessLine(TString::Format(".L %s",createDataMacro.Data()));
21  gROOT->ProcessLine("create_MultipleBackground(200)");
22  std::cout << "Created " << fname << " for tests of the multiclass features" << std::endl;
23  }
24  TFile *input = TFile::Open(fname);
25 
26  // Setup PyMVA and factory
27  std::cout << "Setup TMVA..." << std::endl;
29  TFile* outputFile = TFile::Open("ResultsTestPyAdaBoostMulticlass.root", "RECREATE");
30  TMVA::Factory *factory = new TMVA::Factory("testPyAdaBoostMulticlass", outputFile,
31  "!V:Silent:Color:!DrawProgressBar:AnalysisType=multiclass");
32 
33  // Load data
34  TMVA::DataLoader *dataloader = new TMVA::DataLoader("datasetTestPyAdaBoostMulticlass");
35 
36  TTree *signal = (TTree*)input->Get("TreeS");
37  TTree *background0 = (TTree*)input->Get("TreeB0");
38  TTree *background1 = (TTree*)input->Get("TreeB1");
39  TTree *background2 = (TTree*)input->Get("TreeB2");
40  dataloader->AddTree(signal, "Signal");
41  dataloader->AddTree(background0, "Background_0");
42  dataloader->AddTree(background1, "Background_1");
43  dataloader->AddTree(background2, "Background_2");
44 
45  dataloader->AddVariable("var1");
46  dataloader->AddVariable("var2");
47  dataloader->AddVariable("var3");
48  dataloader->AddVariable("var4");
49 
50  dataloader->PrepareTrainingAndTestTree("",
51  "SplitMode=Random:NormMode=NumEvents:!V");
52 
53  // Book and train method
54  factory->BookMethod(dataloader, TMVA::Types::kPyAdaBoost, "PyAdaBoost",
55  "!H:!V:VarTransform=None:NEstimators=50");
56  std::cout << "Train classifier..." << std::endl;
57  factory->TrainAllMethods();
58 
59  // Clean-up
60  delete factory;
61  delete dataloader;
62  delete outputFile;
63 
64  // Setup reader
65  UInt_t numEvents = 100;
66  std::cout << "Run reader and classify " << numEvents << " events..." << std::endl;
67  TMVA::Reader *reader = new TMVA::Reader("!Color:Silent");
68  Float_t vars[4];
69  reader->AddVariable("var1", vars+0);
70  reader->AddVariable("var2", vars+1);
71  reader->AddVariable("var3", vars+2);
72  reader->AddVariable("var4", vars+3);
73  reader->BookMVA("PyAdaBoost", "datasetTestPyAdaBoostMulticlass/weights/testPyAdaBoostMulticlass_PyAdaBoost.weights.xml");
74 
75  // Get mean response of method on signal and background events
76  signal->SetBranchAddress("var1", vars+0);
77  signal->SetBranchAddress("var2", vars+1);
78  signal->SetBranchAddress("var3", vars+2);
79  signal->SetBranchAddress("var4", vars+3);
80 
81  background0->SetBranchAddress("var1", vars+0);
82  background0->SetBranchAddress("var2", vars+1);
83  background0->SetBranchAddress("var3", vars+2);
84  background0->SetBranchAddress("var4", vars+3);
85 
86  background1->SetBranchAddress("var1", vars+0);
87  background1->SetBranchAddress("var2", vars+1);
88  background1->SetBranchAddress("var3", vars+2);
89  background1->SetBranchAddress("var4", vars+3);
90 
91  background2->SetBranchAddress("var1", vars+0);
92  background2->SetBranchAddress("var2", vars+1);
93  background2->SetBranchAddress("var3", vars+2);
94  background2->SetBranchAddress("var4", vars+3);
95 
96  Float_t meanMvaSignal = 0;
97  Float_t meanMvaBackground0 = 0;
98  Float_t meanMvaBackground1 = 0;
99  Float_t meanMvaBackground2 = 0;
100  for(UInt_t i=0; i<numEvents; i++){
101  signal->GetEntry(i);
102  meanMvaSignal += reader->EvaluateMulticlass("PyAdaBoost")[0];
103  background0->GetEntry(i);
104  meanMvaBackground0 += reader->EvaluateMulticlass("PyAdaBoost")[1];
105  background1->GetEntry(i);
106  meanMvaBackground1 += reader->EvaluateMulticlass("PyAdaBoost")[2];
107  background2->GetEntry(i);
108  meanMvaBackground2 += reader->EvaluateMulticlass("PyAdaBoost")[3];
109  }
110  meanMvaSignal = meanMvaSignal/float(numEvents);
111  meanMvaBackground0 = meanMvaBackground0/float(numEvents);
112  meanMvaBackground1 = meanMvaBackground1/float(numEvents);
113  meanMvaBackground2 = meanMvaBackground2/float(numEvents);
114 
115  // Check whether the response is obviously better than guessing
116 
117  // NOTE: The scikit-learn AdaBoost classifier returns probability values near
118  // to 1.0/num_classes, thought the separation is quite good. You can check this by looking at
119  // the MVA value distributions using TMVAMultiClassGui.
120  // Because of this, the thresholds for passing this test are relaxed to greater or less
121  // 1.0/num_classes for signal and backgrounds respectively.
122 
123  std::cout << "Mean MVA response on signal: " << meanMvaSignal << std::endl;
124  if(meanMvaSignal < 0.25){
125  std::cout << "[ERROR] Mean response on signal is " << meanMvaSignal << " (<0.25)" << std::endl;
126  return 1;
127  }
128  std::cout << "Mean MVA response on background 0: " << meanMvaBackground0 << std::endl;
129  if(meanMvaBackground0 < 0.25){
130  std::cout << "[ERROR] Mean response on background 0 is " << meanMvaBackground0 << " (<0.25)" << std::endl;
131  return 1;
132  }
133  std::cout << "Mean MVA response on background 1: " << meanMvaBackground1 << std::endl;
134  if(meanMvaBackground0 < 0.25){
135  std::cout << "[ERROR] Mean response on background 1 is " << meanMvaBackground1 << " (<0.25)" << std::endl;
136  return 1;
137  }
138  std::cout << "Mean MVA response on background 2: " << meanMvaBackground2 << std::endl;
139  if(meanMvaBackground0 < 0.25){
140  std::cout << "[ERROR] Mean response on background 2 is " << meanMvaBackground2 << " (<0.25)" << std::endl;
141  return 1;
142  }
143 
144  return 0;
145 }
146 
147 int main(){
148  int err = testPyAdaBoostMulticlass();
149  return err;
150 }
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition: TSystem.cxx:1272
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
Definition: Factory.cxx:343
float Float_t
Definition: RtypesCore.h:53
void AddVariable(const TString &expression, Float_t *)
Add a float variable or expression to the reader.
Definition: Reader.cxx:308
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Definition: TFile.h:46
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
#define gROOT
Definition: TROOT.h:375
virtual Int_t GetEntry(Long64_t entry=0, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
Definition: TTree.cxx:5321
Basic string class.
Definition: TString.h:129
void TrainAllMethods()
Iterates through all booked methods and calls training.
Definition: Factory.cxx:1017
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
Definition: DataLoader.cxx:491
static void PyInitialize()
Initialize Python interpreter.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=1, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3909
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
Definition: TString.cxx:2345
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=0)
Change branch address, dealing with clone trees properly.
Definition: TTree.cxx:7873
IMethod * BookMVA(const TString &methodTag, const TString &weightfile)
read method name from weight file
Definition: Reader.cxx:377
R__EXTERN TSystem * gSystem
Definition: TSystem.h:539
unsigned int UInt_t
Definition: RtypesCore.h:42
int testPyAdaBoostMulticlass()
This is the main MVA steering class.
Definition: Factory.h:81
void AddTree(TTree *tree, const TString &className, Double_t weight=1.0, const TCut &cut="", Types::ETreeType tt=Types::kMaxTreeType)
Definition: DataLoader.cxx:357
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
Definition: DataLoader.cxx:629
The Reader class serves to use the MVAs in a specific analysis context.
Definition: Reader.h:63
A TTree object has a header with a name and a title.
Definition: TTree.h:78
const std::vector< Float_t > & EvaluateMulticlass(const TString &methodTag, Double_t aux=0)
evaluates MVA for given set of input variables
Definition: Reader.cxx:647
const char * Data() const
Definition: TString.h:347