50 void TMVAClassificationCategory()
55 std::cout << std::endl <<
"==> Start TMVAClassificationCategory" << std::endl;
60 bool batchMode =
false;
63 TString outfileName(
"TMVA.root" );
68 std::string factoryOptions(
"!V:!Silent:Transformations=I;D;P;G,D" );
69 if (batchMode) factoryOptions +=
":!Color:!DrawProgressBar";
92 fname =
gROOT->GetTutorialDir() +
"/tmva/data/";
94 if (UseOffsetMethod) fname +=
"toy_sigbkg_categ_offset.root";
95 else fname +=
"toy_sigbkg_categ_varoff.root";
98 std::cout <<
"--- TMVAClassificationCategory: Accessing " << fname << std::endl;
103 std::cout <<
"ERROR: could not open data file: " << fname << std::endl;
107 TTree *signalTree = (
TTree*)input->Get(
"TreeS");
124 "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
133 "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
139 TString theCat1Vars =
"var1:var2:var3:var4";
140 TString theCat2Vars = (UseOffsetMethod ?
"var1:var2:var3:var4" :
"var1:var2:var3");
152 "Category_Likelihood_1",
"!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
154 "Category_Likelihood_2",
"!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
172 std::cout <<
"==> Wrote root file: " << outputFile->
GetName() << std::endl;
173 std::cout <<
"==> TMVAClassificationCategory is done!" << std::endl;
182 int main(
int argc,
char** argv )
184 TMVAClassificationCategory();
void AddBackgroundTree(TTree *background, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
virtual const char * GetName() const
Returns name of object.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
TMVA::IMethod * AddMethod(const TCut &, const TString &theVariables, Types::EMVA theMethod, const TString &theTitle, const TString &theOptions)
adds sub-classifier for a category
void TMVAGui(const char *fName="TMVA.root", TString dataset="")
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Virtual base Class for all MVA method.
virtual const char * DirName(const char *pathname)
Return the directory name in pathname.
void TrainAllMethods()
Iterates through all booked methods and calls training.
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=1, Int_t netopt=0)
Create / open a file.
A specialized string object used for TTree selections.
R__EXTERN TSystem * gSystem
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods. ...
This is the main MVA steering class.
Class for categorizing the phase space.
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
A TTree object has a header with a name and a title.
void AddSignalTree(TTree *signal, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
int main(int argc, char **argv)
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
virtual void Close(Option_t *option="")
Close a file.