Logo ROOT   6.10/09
Reference Guide
HybridCalculatorOriginal.cxx
Go to the documentation of this file.
1 // @(#)root/roostats:$Id$
2 
3 /*************************************************************************
4  * Project: RooStats *
5  * Package: RooFit/RooStats *
6  * Authors: *
7  * Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke *
8  * Other author of this class: Danilo Piparo *
9  *************************************************************************
10  * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
11  * All rights reserved. *
12  * *
13  * For the licensing terms see $ROOTSYS/LICENSE. *
14  * For the list of contributors see $ROOTSYS/README/CREDITS. *
15  *************************************************************************/
16 
17 /** \class RooStats::HybridCalculatorOriginal
18  \ingroup Roostats
19 
20 
21 HybridCalculatorOriginal class. This class is deprecated and it is replaced by
22 the HybridCalculator.
23 
24 This is a fresh rewrite in RooStats of `RooStatsCms/LimitCalculator` developed
25 by D. Piparo and G. Schott - Universitaet Karlsruhe
26 
27 The class is born from the need to have an implementation of the CLs
28 method that could take advantage from the RooFit Package.
29 The basic idea is the following:
30 
31  - Instantiate an object specifying a signal+background model, a background model and a dataset.
32  - Perform toy MC experiments to know the distributions of -2lnQ
33  - Calculate the CLsb and CLs values as "integrals" of these distributions.
34 
35 The class allows the user to input models as RooAbsPdf ( TH1 object could be used
36 by using the RooHistPdf class)
37 
38 The pdfs must be "extended": for more information please refer to
39 http://roofit.sourceforge.net). The dataset can be entered as a
40 RooAbsData objects.
41 
42 Unlike the TLimit Class a complete MC generation is performed at each step
43 and not a simple Poisson fluctuation of the contents of the bins.
44 Another innovation is the treatment of the nuisance parameters. The user
45 can input in the constructor nuisance parameters.
46 To include the information that we have about the nuisance parameters a prior
47 PDF (RooAbsPdf) should be specified
48 
49 Different test statistic can be used (likelihood ratio, number of events or
50 profile likelihood ratio. The default is the likelihood ratio.
51 See the method SetTestStatistic.
52 
53 The number of toys to be generated is controlled by SetNumberOfToys(n).
54 
55 The result of the calculations is returned as a HybridResult object pointer.
56 
57 see also the following interesting references:
58 
59  - Alex Read, "Presentation of search results: the CLs technique",
60  Journal of Physics G: Nucl. Part. Phys. 28 2693-2704 (2002).
61  see http://www.iop.org/EJ/abstract/0954-3899/28/10/313/
62 
63  - Alex Read, "Modified Frequentist Analysis of Search Results (The CLs Method)" CERN 2000-005 (30 May 2000)
64 
65  - V. Bartsch, G.Quast, "Expected signal observability at future experiments" CMS NOTE 2005/004
66 
67  - TLimit
68 */
69 
71 
72 #include "RooStats/ModelConfig.h"
73 
74 #include "RooDataHist.h"
75 #include "RooDataSet.h"
76 #include "RooGlobalFunc.h"
77 #include "RooNLLVar.h"
78 #include "RooRealVar.h"
79 #include "RooAbsData.h"
80 #include "RooWorkspace.h"
81 
82 #include "TH1.h"
83 
84 using namespace std;
85 
87 
88 using namespace RooStats;
89 
90 ////////////////////////////////////////////////////////////////////////////////
91 /// constructor with name and title
92 
93 HybridCalculatorOriginal::HybridCalculatorOriginal(const char *name) :
94  TNamed(name,name),
95  fSbModel(0),
96  fBModel(0),
97  fObservables(0),
98  fNuisanceParameters(0),
99  fPriorPdf(0),
100  fData(0),
101  fGenerateBinned(false),
102  fUsePriorPdf(false), fTmpDoExtended(true)
103 {
104  // set default parameters
105  SetTestStatistic(1);
106  SetNumberOfToys(1000);
107 }
108 
109 ////////////////////////////////////////////////////////////////////////////////
110 /// HybridCalculatorOriginal constructor without specifying a data set
111 /// the user need to specify the models in the S+B case and B-only case,
112 /// the list of observables of the model(s) (for MC-generation), the list of parameters
113 /// that are marginalised and the prior distribution of those parameters
114 
116  RooAbsPdf& bModel,
117  RooArgList& observables,
118  const RooArgSet* nuisance_parameters,
119  RooAbsPdf* priorPdf ,
120  bool GenerateBinned,
121  int testStatistics,
122  int numToys) :
123  fSbModel(&sbModel),
124  fBModel(&bModel),
125  fNuisanceParameters(nuisance_parameters),
126  fPriorPdf(priorPdf),
127  fData(0),
128  fGenerateBinned(GenerateBinned),
129  fUsePriorPdf(false),
130  fTmpDoExtended(true)
131 {
132 
133  // observables are managed by the class (they are copied in)
134  fObservables = new RooArgList(observables);
135  //Try to recover the information from the pdf's
136  //fObservables=new RooArgList("fObservables");
137  //fNuisanceParameters=new RooArgSet("fNuisanceParameters");
138  // if (priorPdf){
139 
140 
141  SetTestStatistic(testStatistics);
142  SetNumberOfToys(numToys);
143 
144  if (priorPdf) UseNuisance(true);
145 
146  // this->Print();
147  /* if ( _verbose ) */ //this->PrintMore("v"); /// TO DO: add the verbose mode
148 }
149 
150 ////////////////////////////////////////////////////////////////////////////////
151 /// HybridCalculatorOriginal constructor for performing hypotesis test
152 /// the user need to specify the data set, the models in the S+B case and B-only case.
153 /// In case of treatment of nuisance parameter, the user need to specify the
154 /// the list of parameters that are marginalised and the prior distribution of those parameters
155 
157  RooAbsPdf& sbModel,
158  RooAbsPdf& bModel,
159  const RooArgSet* nuisance_parameters,
160  RooAbsPdf* priorPdf,
161  bool GenerateBinned,
162  int testStatistics,
163  int numToys) :
164  fSbModel(&sbModel),
165  fBModel(&bModel),
166  fObservables(0),
167  fNuisanceParameters(nuisance_parameters),
168  fPriorPdf(priorPdf),
169  fData(&data),
170  fGenerateBinned(GenerateBinned),
171  fUsePriorPdf(false),
172  fTmpDoExtended(true)
173 {
174 
175 
176  SetTestStatistic(testStatistics);
177  SetNumberOfToys(numToys);
178 
179  if (priorPdf) UseNuisance(true);
180 }
181 
182 ////////////////////////////////////////////////////////////////////////////////
183 /// Constructor with a ModelConfig object representing the signal + background model and
184 /// another model config representig the background only model
185 /// a Prior pdf for the nuiscane parameter of the signal and background can be specified in
186 /// the s+b model or the b model. If it is specified in the s+b model, the one of the s+b model will be used
187 
189  const ModelConfig& sbModel,
190  const ModelConfig& bModel,
191  bool GenerateBinned,
192  int testStatistics,
193  int numToys) :
194  fSbModel(sbModel.GetPdf()),
195  fBModel(bModel.GetPdf()),
196  fObservables(0), // no need to set them - can be taken from the data
197  fNuisanceParameters((sbModel.GetNuisanceParameters()) ? sbModel.GetNuisanceParameters() : bModel.GetNuisanceParameters()),
198  fPriorPdf((sbModel.GetPriorPdf()) ? sbModel.GetPriorPdf() : bModel.GetPriorPdf()),
199  fData(&data),
200  fGenerateBinned(GenerateBinned),
201  fUsePriorPdf(false),
202  fTmpDoExtended(true)
203 {
204 
205  if (fPriorPdf) UseNuisance(true);
206 
207  SetTestStatistic(testStatistics);
208  SetNumberOfToys(numToys);
209 }
210 
211 ////////////////////////////////////////////////////////////////////////////////
212 /// HybridCalculatorOriginal destructor
213 
215 {
216  if (fObservables) delete fObservables;
217 }
218 
219 ////////////////////////////////////////////////////////////////////////////////
220 /// Set the model describing the null hypothesis
221 
223 {
224  fBModel = model.GetPdf();
225  // only if it has not been set before
226  if (!fPriorPdf) fPriorPdf = model.GetPriorPdf();
228 }
229 
230 ////////////////////////////////////////////////////////////////////////////////
231 /// Set the model describing the alternate hypothesis
232 
234 {
235  fSbModel = model.GetPdf();
236  fPriorPdf = model.GetPriorPdf();
238 }
239 
240 ////////////////////////////////////////////////////////////////////////////////
241 /// set the desired test statistics:
242 /// - index=1 : likelihood ratio: 2 * log( L_sb / L_b ) (DEFAULT)
243 /// - index=2 : number of generated events
244 /// - index=3 : profiled likelihood ratio
245 /// if the index is different to any of those values, the default is used
246 
248 {
249  fTestStatisticsIdx = index;
250 }
251 
252 ////////////////////////////////////////////////////////////////////////////////
253 /// first compute the test statistics for data and then prepare and run the toy-MC experiments
254 
255 HybridResult* HybridCalculatorOriginal::Calculate(TH1& data, unsigned int nToys, bool usePriors) const
256 {
257 
258  /// convert data TH1 histogram to a RooDataHist
259  TString dataHistName = GetName(); dataHistName += "_roodatahist";
260  RooDataHist dataHist(dataHistName,"Data distribution as RooDataHist converted from TH1",*fObservables,&data);
261 
262  HybridResult* result = Calculate(dataHist,nToys,usePriors);
263 
264  return result;
265 }
266 
267 ////////////////////////////////////////////////////////////////////////////////
268 /// first compute the test statistics for data and then prepare and run the toy-MC experiments
269 
270 HybridResult* HybridCalculatorOriginal::Calculate(RooAbsData& data, unsigned int nToys, bool usePriors) const
271 {
272 
273  double testStatData = 0;
274  if ( fTestStatisticsIdx==2 ) {
275  /// number of events used as test statistics
276  double nEvents = data.sumEntries();
277  testStatData = nEvents;
278  } else if ( fTestStatisticsIdx==3 ) {
279  /// profiled likelihood ratio used as test statistics
280  if ( fTmpDoExtended ) {
281  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,data,RooFit::CloneData(false),RooFit::Extended());
283  double sb_nll_val = sb_nll.getVal();
284  RooNLLVar b_nll("b_nll","b_nll",*fBModel,data,RooFit::CloneData(false),RooFit::Extended());
286  double b_nll_val = b_nll.getVal();
287  double m2lnQ = 2*(sb_nll_val-b_nll_val);
288  testStatData = m2lnQ;
289  } else {
290  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,data,RooFit::CloneData(false));
291  fSbModel->fitTo(data,RooFit::Hesse(false),RooFit::Strategy(0));
292  double sb_nll_val = sb_nll.getVal();
293  RooNLLVar b_nll("b_nll","b_nll",*fBModel,data,RooFit::CloneData(false));
294  fBModel->fitTo(data,RooFit::Hesse(false),RooFit::Strategy(0));
295  double b_nll_val = b_nll.getVal();
296  double m2lnQ = 2*(sb_nll_val-b_nll_val);
297  testStatData = m2lnQ;
298  }
299  } else if ( fTestStatisticsIdx==1 ) {
300  /// likelihood ratio used as test statistics (default)
301  if ( fTmpDoExtended ) {
302  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,data,RooFit::Extended());
303  RooNLLVar b_nll("b_nll","b_nll",*fBModel,data,RooFit::Extended());
304  double m2lnQ = 2*(sb_nll.getVal()-b_nll.getVal());
305  testStatData = m2lnQ;
306  } else {
307  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,data);
308  RooNLLVar b_nll("b_nll","b_nll",*fBModel,data);
309  double m2lnQ = 2*(sb_nll.getVal()-b_nll.getVal());
310  testStatData = m2lnQ;
311  }
312  }
313 
314  std::cout << "Test statistics has been evaluated for data\n";
315 
316  HybridResult* result = Calculate(nToys,usePriors);
317  result->SetDataTestStatistics(testStatData);
318 
319  return result;
320 }
321 
322 ////////////////////////////////////////////////////////////////////////////////
323 
324 HybridResult* HybridCalculatorOriginal::Calculate(unsigned int nToys, bool usePriors) const
325 {
326  std::vector<double> bVals;
327  bVals.reserve(nToys);
328 
329  std::vector<double> sbVals;
330  sbVals.reserve(nToys);
331 
332  RunToys(bVals,sbVals,nToys,usePriors);
333 
335 
336  TString name = "HybridResult_" + TString(GetName() );
337 
338  if ( fTestStatisticsIdx==2 )
339  result = new HybridResult(name,sbVals,bVals,false);
340  else
341  result = new HybridResult(name,sbVals,bVals);
342 
343  return result;
344 }
345 
346 ////////////////////////////////////////////////////////////////////////////////
347 /// do the actual run-MC processing
348 
349 void HybridCalculatorOriginal::RunToys(std::vector<double>& bVals, std::vector<double>& sbVals, unsigned int nToys, bool usePriors) const
350 {
351  std::cout << "HybridCalculatorOriginal: run " << nToys << " toy-MC experiments\n";
352  std::cout << "with test statistics index: " << fTestStatisticsIdx << "\n";
353  if (usePriors) std::cout << "marginalize nuisance parameters \n";
354 
355  assert(nToys > 0);
356  assert(fBModel);
357  assert(fSbModel);
358  if (usePriors) {
359  assert(fPriorPdf);
360  assert(fNuisanceParameters);
361  }
362 
363  std::vector<double> parameterValues; /// array to hold the initial parameter values
364  /// backup the initial values of the parameters that are varied by the prior MC-integration
365  int nParameters = (fNuisanceParameters) ? fNuisanceParameters->getSize() : 0;
366  RooArgList parametersList("parametersList"); /// transforms the RooArgSet in a RooArgList (needed for .at())
367  if (usePriors && nParameters>0) {
368  parametersList.add(*fNuisanceParameters);
369  parameterValues.resize(nParameters);
370  for (int iParameter=0; iParameter<nParameters; iParameter++) {
371  RooRealVar* oneParam = (RooRealVar*) parametersList.at(iParameter);
372  parameterValues[iParameter] = oneParam->getVal();
373  }
374  }
375 
376  // create a cloned list of all parameters need in case of test statistics 3 where those
377  // changed by the best fit
378  RooArgSet originalSbParams;
379  RooArgSet originalBParams;
380  if (fTestStatisticsIdx == 3) {
383  if (sbparams) originalSbParams.addClone(*sbparams);
384  if (bparams) originalBParams.addClone(*bparams);
385  delete sbparams;
386  delete bparams;
387 // originalSbParams.Print("V");
388 // originalBParams.Print("V");
389  }
390 
391 
392  for (unsigned int iToy=0; iToy<nToys; iToy++) {
393 
394  /// prints a progress report every 500 iterations
395  /// TO DO: add a global verbose flag
396  if ( /*verbose && */ iToy%500==0 ) {
397  std::cout << "....... toy number " << iToy << " / " << nToys << std::endl;
398  }
399 
400  /// vary the value of the integrated parameters according to the prior pdf
401  if (usePriors && nParameters>0) {
402  /// generation from the prior pdf (TO DO: RooMCStudy could be used here)
404  for (int iParameter=0; iParameter<nParameters; iParameter++) {
405  RooRealVar* oneParam = (RooRealVar*) parametersList.at(iParameter);
406  oneParam->setVal(tmpValues->get()->getRealValue(oneParam->GetName()));
407  }
408  delete tmpValues;
409  }
410 
411 
412  /// generate the dataset in the B-only hypothesis
413  RooAbsData* bData;
414  if (fGenerateBinned)
415  bData = static_cast<RooAbsData*> (fBModel->generateBinned(*fObservables,RooFit::Extended()));
416  else {
417  if ( fTmpDoExtended ) bData = static_cast<RooAbsData*> (fBModel->generate(*fObservables,RooFit::Extended()));
418  else bData = static_cast<RooAbsData*> (fBModel->generate(*fObservables,1));
419  }
420 
421  /// work-around in case of an empty dataset (TO DO: need a debug in RooFit?)
422  bool bIsEmpty = false;
423  if (bData==NULL) {
424  bIsEmpty = true;
425  // if ( _verbose ) std::cout << "empty B-only dataset!\n";
426  RooDataSet* bDataDummy=new RooDataSet("bDataDummy","empty dataset",*fObservables);
427  bData = static_cast<RooAbsData*>(new RooDataHist ("bDataEmpty","",*fObservables,*bDataDummy));
428  delete bDataDummy;
429  }
430 
431  /// generate the dataset in the S+B hypothesis
432  RooAbsData* sbData;
433  if (fGenerateBinned)
434  sbData = static_cast<RooAbsData*> (fSbModel->generateBinned(*fObservables,RooFit::Extended()));
435  else {
436  if ( fTmpDoExtended ) sbData = static_cast<RooAbsData*> (fSbModel->generate(*fObservables,RooFit::Extended()));
437  else sbData = static_cast<RooAbsData*> (fSbModel->generate(*fObservables,1));
438  }
439 
440  /// work-around in case of an empty dataset (TO DO: need a debug in RooFit?)
441  bool sbIsEmpty = false;
442  if (sbData==NULL) {
443  sbIsEmpty = true;
444  // if ( _verbose ) std::cout << "empty S+B dataset!\n";
445  RooDataSet* sbDataDummy=new RooDataSet("sbDataDummy","empty dataset",*fObservables);
446  sbData = static_cast<RooAbsData*>(new RooDataHist ("sbDataEmpty","",*fObservables,*sbDataDummy));
447  delete sbDataDummy;
448  }
449 
450  /// restore the parameters to their initial values
451  if (usePriors && nParameters>0) {
452  for (int iParameter=0; iParameter<nParameters; iParameter++) {
453  RooRealVar* oneParam = (RooRealVar*) parametersList.at(iParameter);
454  oneParam->setVal(parameterValues[iParameter]);
455  }
456  }
457 
458  // test first the S+B hypothesis and the the B-only hypothesis
459  for (int hypoTested=0; hypoTested<=1; hypoTested++) {
460  RooAbsData* dataToTest = sbData;
461  bool dataIsEmpty = sbIsEmpty;
462  if ( hypoTested==1 ) { dataToTest = bData; dataIsEmpty = bIsEmpty; }
463  /// evaluate the test statistic in the tested hypothesis case
464  if ( fTestStatisticsIdx==2 ) { /// number of events used as test statistics
465  double nEvents = 0;
466  if ( !dataIsEmpty ) nEvents = dataToTest->numEntries();
467  if ( hypoTested==0 ) sbVals.push_back(nEvents);
468  else bVals.push_back(nEvents);
469  } else if ( fTestStatisticsIdx==3 ) { /// profiled likelihood ratio used as test statistics
470  if ( fTmpDoExtended ) {
471  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,*dataToTest,RooFit::CloneData(false),RooFit::Extended());
473  double sb_nll_val = sb_nll.getVal();
474  RooNLLVar b_nll("b_nll","b_nll",*fBModel,*dataToTest,RooFit::CloneData(false),RooFit::Extended());
476  double b_nll_val = b_nll.getVal();
477  double m2lnQ = -2*(b_nll_val-sb_nll_val);
478  if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
479  else bVals.push_back(m2lnQ);
480  } else {
481  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,*dataToTest,RooFit::CloneData(false));
482  fSbModel->fitTo(*dataToTest,RooFit::PrintLevel(-1), RooFit::Hesse(false),RooFit::Strategy(0));
483  double sb_nll_val = sb_nll.getVal();
484  RooNLLVar b_nll("b_nll","b_nll",*fBModel,*dataToTest,RooFit::CloneData(false));
485  fBModel->fitTo(*dataToTest,RooFit::PrintLevel(-1), RooFit::Hesse(false),RooFit::Strategy(0));
486  double b_nll_val = b_nll.getVal();
487  double m2lnQ = -2*(b_nll_val-sb_nll_val);
488  if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
489  else bVals.push_back(m2lnQ);
490  }
491  } else if ( fTestStatisticsIdx==1 ) { /// likelihood ratio used as test statistics (default)
492  if ( fTmpDoExtended ) {
493  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,*dataToTest,RooFit::CloneData(false),RooFit::Extended());
494  RooNLLVar b_nll("b_nll","b_nll",*fBModel,*dataToTest,RooFit::CloneData(false),RooFit::Extended());
495  double m2lnQ = -2*(b_nll.getVal()-sb_nll.getVal());
496  if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
497  else bVals.push_back(m2lnQ);
498  } else {
499  RooNLLVar sb_nll("sb_nll","sb_nll",*fSbModel,*dataToTest,RooFit::CloneData(false));
500  RooNLLVar b_nll("b_nll","b_nll",*fBModel,*dataToTest,RooFit::CloneData(false));
501  double m2lnQ = -2*(b_nll.getVal()-sb_nll.getVal());
502  if ( hypoTested==0 ) sbVals.push_back(m2lnQ);
503  else bVals.push_back(m2lnQ);
504  }
505  }
506  } // tested both hypotheses
507 
508  /// delete the toy-MC datasets
509  delete sbData;
510  delete bData;
511 
512  /// restore the parameters to their initial values in case fitting is done
513  if (fTestStatisticsIdx == 3) {
515  if (sbparams) {
516  assert(originalSbParams.getSize() == sbparams->getSize());
517  *sbparams = originalSbParams;
518  delete sbparams;
519  }
521  if (bparams) {
522  assert(originalBParams.getSize() == bparams->getSize());
523  *bparams = originalBParams;
524  delete bparams;
525  }
526  }
527 
528 
529 
530  } /// end of loop over toy-MC experiments
531 
532 
533  /// restore the parameters to their initial values
534  if (usePriors && nParameters>0) {
535  for (int iParameter=0; iParameter<nParameters; iParameter++) {
536  RooRealVar* oneParam = (RooRealVar*) parametersList.at(iParameter);
537  oneParam->setVal(parameterValues[iParameter]);
538  }
539  }
540 
541  return;
542 }
543 
544 ////////////////////////////////////////////////////////////////////////////////
545 /// Print out some information about the input models
546 
547 void HybridCalculatorOriginal::PrintMore(const char* options) const
548 {
549 
550  if (fSbModel) {
551  std::cout << "Signal plus background model:\n";
552  fSbModel->Print(options);
553  }
554 
555  if (fBModel) {
556  std::cout << "\nBackground model:\n";
557  fBModel->Print(options);
558  }
559 
560  if (fObservables) {
561  std::cout << "\nObservables:\n";
562  fObservables->Print(options);
563  }
564 
565  if (fNuisanceParameters) {
566  std::cout << "\nParameters being integrated:\n";
567  fNuisanceParameters->Print(options);
568  }
569 
570  if (fPriorPdf) {
571  std::cout << "\nPrior PDF model for integration:\n";
572  fPriorPdf->Print(options);
573  }
574 
575  return;
576 }
577 
578 ////////////////////////////////////////////////////////////////////////////////
579 /// implementation of inherited methods from HypoTestCalculator
580 
582  // perform the hypothesis test and return result of hypothesis test
583 
584  // check first that everything needed is there
585  if (!DoCheckInputs()) return 0;
586  RooAbsData * treeData = dynamic_cast<RooAbsData *> (fData);
587  if (!treeData) {
588  std::cerr << "Error in HybridCalculatorOriginal::GetHypoTest - invalid data type - return NULL" << std::endl;
589  return 0;
590  }
591  bool usePrior = (fUsePriorPdf && fPriorPdf );
592  return Calculate( *treeData, fNToys, usePrior);
593 }
594 
595 
597  if (!fData) {
598  std::cerr << "Error in HybridCalculatorOriginal - data have not been set" << std::endl;
599  return false;
600  }
601 
602  // if observable have not been set take them from data
603  if (!fObservables && fData->get() ) fObservables = new RooArgList( *fData->get() );
604  if (!fObservables) {
605  std::cerr << "Error in HybridCalculatorOriginal - no observables" << std::endl;
606  return false;
607  }
608 
609  if (!fSbModel) {
610  std::cerr << "Error in HybridCalculatorOriginal - S+B pdf has not been set " << std::endl;
611  return false;
612  }
613 
614  if (!fBModel) {
615  std::cerr << "Error in HybridCalculatorOriginal - B pdf has not been set" << std::endl;
616  return false;
617  }
619  std::cerr << "Error in HybridCalculatorOriginal - nuisance parameters have not been set " << std::endl;
620  return false;
621  }
622  if (fUsePriorPdf && !fPriorPdf) {
623  std::cerr << "Error in HybridCalculatorOriginal - prior pdf has not been set " << std::endl;
624  return false;
625  }
626  return true;
627 }
virtual Double_t sumEntries() const =0
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE)
Add the specified argument to list.
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition: ModelConfig.h:30
virtual const RooArgSet * get() const
Definition: RooAbsData.h:77
virtual RooDataHist * generateBinned(const RooArgSet &whatVars, Double_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none())
Generate a new dataset containing the specified variables with events sampled from our distribution...
Definition: RooAbsPdf.cxx:2175
RooCmdArg CloneData(Bool_t flag)
RooCmdArg PrintLevel(Int_t code)
Double_t getVal(const RooArgSet *set=0) const
Definition: RooAbsReal.h:64
RooCmdArg Strategy(Int_t code)
HybridCalculatorOriginal class.
HybridResult * Calculate(TH1 &data, unsigned int nToys, bool usePriors) const
first compute the test statistics for data and then prepare and run the toy-MC experiments ...
STL namespace.
#define NULL
Definition: RtypesCore.h:88
RooCmdArg Extended(Bool_t flag=kTRUE)
void SetDataTestStatistics(double testStat_data_val)
set the value of the test statistics on data
RooDataSet is a container class to hold N-dimensional binned data.
Definition: RooDataHist.h:40
The TNamed class is the base class for all named ROOT classes.
Definition: TNamed.h:29
virtual HybridResult * GetHypoTest() const
inherited methods from HypoTestCalculator interface
virtual void SetAlternateModel(const ModelConfig &)
Set the model describing the alternate hypothesis.
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooAbsArg.h:227
virtual void SetNullModel(const ModelConfig &)
Set the model describing the null hypothesis.
void RunToys(std::vector< double > &bVals, std::vector< double > &sbVals, unsigned int nToys, bool usePriors) const
do the actual run-MC processing
virtual void Print(Option_t *options=0) const
This method must be overridden when a class wants to print itself.
HybridCalculatorOriginal(const char *name=0)
Dummy Constructor with only name.
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void addClone(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling addOwned() for each element in the source...
Definition: RooArgSet.h:94
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return NULL if not existing)
Definition: ModelConfig.h:234
virtual void setVal(Double_t value)
Set value of variable to &#39;value&#39;.
Definition: RooRealVar.cxx:205
const int nEvents
Definition: testRooFit.cxx:42
Int_t getSize() const
Class RooNLLVar implements a a -log(likelihood) calculation from a dataset and a PDF.
Definition: RooNLLVar.h:26
RooAbsArg * at(Int_t idx) const
Definition: RooArgList.h:84
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:29
virtual const RooArgSet * get(Int_t index) const
Return RooArgSet with coordinates of event &#39;index&#39;.
Namespace for the RooStats classes.
Definition: Asimov.h:20
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
Definition: ModelConfig.h:222
RooCmdArg Hesse(Bool_t flag=kTRUE)
#define ClassImp(name)
Definition: Rtypes.h:336
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don&#39;t match any of...
Definition: RooAbsArg.cxx:560
The TH1 histogram class.
Definition: TH1.h:56
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
Definition: ModelConfig.h:228
Double_t getRealValue(const char *name, Double_t defVal=0, Bool_t verbose=kFALSE) const
Get value of a RooAbsReal stored in set with given name.
Definition: RooArgSet.cxx:527
RooDataSet * generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none())
Generate a new dataset containing the specified variables with events sampled from our distribution...
Definition: RooAbsPdf.cxx:1702
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
Definition: RooAbsPdf.cxx:1056
double result[121]
Class encapsulating the result of the HybridCalculatorOriginal.
Definition: HybridResult.h:25
void PrintMore(const char *options) const
Print out some information about the input models.
virtual Int_t numEntries() const
Definition: RooAbsData.cxx:269
void SetTestStatistic(int index)
set the desired test statistics: index=1 : 2 * log( L_sb / L_b ) (DEFAULT) index=2 : number of genera...
virtual ~HybridCalculatorOriginal()
Destructor of HybridCalculator.