54 for (
int j = 0; j <
N; ++j) {
57 t2.
Branch(xname.c_str(),&x[j],xname2.c_str());
59 t2.
Branch(
"ev",&ev,
"ev/I");
63 for (
int j = 0; j <
N; ++j) {
64 double mu = double(j)/10.;
65 double s = 1.0 + double(j)/10.;
84 std::cout <<
"number of unbin data is " << n <<
" of dim " <<
N << std::endl;
88 for (
int j = 0; j <
N; ++j) {
94 std::vector<double>
m(N);
95 for (
int unsigned i = 0; i <
n; ++i) {
98 for (
int j = 0; j <
N; ++j)
103 std::cout <<
"average values of means :\n";
104 for (
int j = 0; j <
N; ++j)
105 std::cout << m[j]/n <<
" ";
118 class MultiGaussRooPdf {
123 MultiGaussRooPdf(
unsigned int n) :
124 x(n),
m(n), s(n), g(n), pdf(n)
129 for (
unsigned int j = 0; j <
n; ++j) {
132 x[j] =
new RooRealVar(xname.c_str(),xname.c_str(),-10000,10000) ;
144 g[j] =
new RooGaussian(gname.c_str(),
"gauss(x,mean,sigma)",*
x[j],*
m[j],*s[j]);
160 RooAbsPdf & getPdf() {
return *pdf.back(); }
162 std::unique_ptr<RooArgSet> getVars() {
163 std::unique_ptr<RooArgSet> vars(
new RooArgSet() );
164 for (
unsigned int i = 0; i <
x.size(); ++i)
169 ~MultiGaussRooPdf() {
172 for (
int j = 0; j <
n; ++j) {
177 if (j> 0)
delete pdf[j];
183 std::vector<RooRealVar *>
x;
184 std::vector<RooRealVar *>
m;
185 std::vector<RooRealVar *> s;
187 std::vector<RooAbsPdf *> g;
188 std::vector<RooAbsPdf *> pdf;
197 std::cout <<
"\n************************************************************\n";
198 std::cout <<
"\tFit using RooFit (Likelihood Fit) on " << pdf.
GetName() << std::endl;
205 for (
int i = 0; i <
nfit; ++i) {
213 std::cout <<
"num entries = " << data.
numEntries() << std::endl;
216 std::cout <<
"\n\nDo the fit now \n\n";
222 #ifndef _WIN32 // until a bug 30762 is fixed 230 std::cout <<
" Roofit status " << result->
status() << std::endl;
233 iret |= (result == 0);
239 std::cout <<
"RooFit result " << std::endl;
245 std::cout <<
"\nTime: \t" << w.
RealTime() <<
" , " << w.
CpuTime() << std::endl;
246 std::cout <<
"\n************************************************************\n";
252 template <
class MinType>
276 bool ret = fitter.
Fit(d);
278 std::cout <<
" Fit Failed " << std::endl;
286 template <
class MinType,
class FitObj>
289 std::cout <<
"\n************************************************************\n";
290 std::cout <<
"\tFit using new Fit::Fitter\n";
291 std::cout <<
"\tMinimizer is " <<
MinType::name() <<
" " << MinType::name2() << std::endl;
298 iret |= DoFit<MinType>(fitobj,
func,
true, useGrad);
301 for (
int i = 0; i <
nfit; ++i) {
302 func.SetParameters(
iniPar);
303 iret = DoFit<MinType>(fitobj,
func,
false, useGrad);
304 if (iret != 0)
break;
308 std::cout <<
"\nTime: \t" << w.
RealTime() <<
" , " << w.
CpuTime() << std::endl;
309 std::cout <<
"\n************************************************************\n";
316 static double F(
const double *
x,
const double *p) {
323 static double F(
const double *
x,
const double *p) {
342 TTree tree(
"t",
"a large Tree with many gaussian variables");
346 for (
int i = 0; i <
N; ++i) {
352 MultiGaussRooPdf multipdf(N);
355 std::unique_ptr<RooArgSet> xvars(multipdf.getVars());
360 std::cout <<
"ndim " << wpdf.NDim() << std::endl;
361 std::cout <<
"npar " << wpdf.NPar() << std::endl;
362 for (
unsigned int i = 0; i < wpdf.NPar(); ++i)
363 std::cout <<
" par " << i <<
" is " << wpdf.ParameterName(i) <<
" value " << wpdf.Parameters()[i] << std::endl;
366 FitUsingNewFitter<TMINUIT>(&
tree,wpdf);
369 wpdf.SetParameters(
iniPar);
377 FitUsingNewFitter<TMINUIT>(&
tree,gausn);
RooArgSet * getVariables(Bool_t stripDisconnected=kTRUE) const
Return RooArgSet with all variables (tree leaf nodes of expresssion tree)
virtual const char * GetName() const
Returns name of object.
void SetPrintLevel(int level)
set print level
Random number generator class based on M.
Double_t RealTime()
Stop the stopwatch (if it is running) and return the realtime (in seconds) passed between the start a...
virtual void SetAddress(void *add)
Set address of this branch.
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
void SetTolerance(double tol)
set the tolerance
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
RooCmdArg PrintLevel(Int_t code)
RooProdPdf is an efficient implementation of a product of PDFs of the form.
RooCmdArg Minos(Bool_t flag=kTRUE)
int FitUsingNewFitter(FitObj *fitobj, Func &func, bool useGrad=false)
virtual Int_t Fill()
Fill all branches.
virtual Int_t GetEntry(Long64_t entry=0, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
Double_t CpuTime()
Stop the stopwatch (if it is running) and return the cputime (in seconds) passed between the start an...
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
double normal_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution.
const FitResult & Result() const
get fit result
void Stop()
Stop the stopwatch.
virtual void Print(Option_t *options=0) const
This method must be overridden when a class wants to print itself.
ROOT::Math::IParamMultiFunction Func
const FitConfig & Config() const
access to the fit configuration (const method)
RooRealVar represents a fundamental (non-derived) real valued object.
virtual TBranch * GetBranch(const char *name)
Return pointer to the branch with the given name in this tree or its friends.
bool Fit(const Data &data, const Function &func)
fit a data set using any generic model function If data set is binned a least square fit is performed...
void SetMinimizer(const char *type, const char *algo=0)
set minimizer type
Fitter class, entry point for performing all type of fits.
RooDataSet is a container class to hold unbinned data.
void SetFunction(const IModelFunction &func, bool useGradient=false)
Set the fitted function (model function) from a parametric function interface.
virtual void SetParameters(const double *p)=0
Set the parameter values.
RooCmdArg Hesse(Bool_t flag=kTRUE)
int FitUsingRooFit(TTree &tree, RooAbsPdf &pdf, RooArgSet &xvars)
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
void Add(double x)
preallocate a data set given size and dimension of the coordinates if a vector already exists with co...
virtual void ResetBranchAddresses()
Tell all of our branches to drop their current objects and allocate new ones.
double func(double *x, double *p)
void Append(unsigned int newPoints, unsigned int dim=1, bool isWeighted=false)
virtual Long64_t GetEntries() const
virtual Int_t Branch(TCollection *list, Int_t bufsize=32000, Int_t splitlevel=99, const char *name="")
Create one branch for each element in the collection.
RooCmdArg Save(Bool_t flag=kTRUE)
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
void Print(std::ostream &os, bool covmat=false) const
print the result and optionaly covariance matrix and correlations
std::string ToString(const T &val)
Utility function for conversion to strings.
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
int DoFit(TTree *tree, Func &func, bool debug=false, bool=false)
A TTree object has a header with a name and a title.
A TTree is a list of TBranches.
void FillUnBinData(ROOT::Fit::UnBinData &d, TTree *tree)
virtual Int_t numEntries() const
WrappedParamFunction class to wrap any multi-dimensional function pbject implementing the operator()(...