Loading [MathJax]/extensions/tex2jax.js
ROOT  6.06/09
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
RooHistError.cxx
Go to the documentation of this file.
1 /*****************************************************************************
2  * Project: RooFit *
3  * Package: RooFitCore *
4  * @(#)root/roofitcore:$Id$
5  * Authors: *
6  * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
7  * DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
8  * *
9  * Copyright (c) 2000-2005, Regents of the University of California *
10  * and Stanford University. All rights reserved. *
11  * *
12  * Redistribution and use in source and binary forms, *
13  * with or without modification, are permitted according to the terms *
14  * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15  *****************************************************************************/
16 
17 //////////////////////////////////////////////////////////////////////////////
18 //
19 // BEGIN_HTML
20 // RooHistError is a singleton class used to calculate the error bars
21 // for each bin of a RooHist object. Errors are calculated by integrating
22 // a specified area of a Poisson or Binomail error distribution.
23 // END_HTML
24 //
25 
26 #include "RooFit.h"
27 
28 #include "RooHistError.h"
29 #include "RooBrentRootFinder.h"
30 #include "RooMsgService.h"
31 #include "TMath.h"
32 
33 #include "Riostream.h"
34 #include <assert.h>
35 
36 using namespace std;
37 
39  ;
40 
41 
42 
43 ////////////////////////////////////////////////////////////////////////////////
44 /// Return a reference to a singleton object that is created the
45 /// first time this method is called. Only one object will be
46 /// constructed per ROOT session.
47 
49 {
50  static RooHistError _theInstance;
51  return _theInstance;
52 }
53 
54 
55 ////////////////////////////////////////////////////////////////////////////////
56 /// Construct our singleton object.
57 
59 {
60  // Initialize lookup table ;
61  Int_t i ;
62  for (i=0 ; i<1000 ; i++) {
63  getPoissonIntervalCalc(i,_poissonLoLUT[i],_poissonHiLUT[i],1.) ;
64  }
65 
66 }
67 
68 
69 
70 ////////////////////////////////////////////////////////////////////////////////
71 /// Return a confidence interval for the expected number of events given n
72 /// observed (unweighted) events. The interval will contain the same probability
73 /// as nSigma of a Gaussian. Uses a central interval unless this does not enclose
74 /// the point estimate n (ie, for small n) in which case the interval is adjusted
75 /// to start at n. This method uses a lookup table to return precalculated results
76 /// for n<1000
77 
79 {
80  // Use lookup table for most common cases
81  if (n<1000 && nSigma==1.) {
82  mu1=_poissonLoLUT[n] ;
83  mu2=_poissonHiLUT[n] ;
84  return kTRUE ;
85  }
86 
87  // Forward to calculation method
88  Bool_t ret = getPoissonIntervalCalc(n,mu1,mu2,nSigma) ;
89  return ret ;
90 }
91 
92 
93 
94 ////////////////////////////////////////////////////////////////////////////////
95 /// Calculate a confidence interval for the expected number of events given n
96 /// observed (unweighted) events. The interval will contain the same probability
97 /// as nSigma of a Gaussian. Uses a central interval unless this does not enclose
98 /// the point estimate n (ie, for small n) in which case the interval is adjusted
99 /// to start at n.
100 
102 {
103  // sanity checks
104  if(n < 0) {
105  oocoutE((TObject*)0,Plotting) << "RooHistError::getPoissonInterval: cannot calculate interval for n = " << n << endl;
106  return kFALSE;
107  }
108 
109  // use assymptotic error if possible
110  if(n > 100) {
111  mu1= n - sqrt(n+0.25) + 0.5;
112  mu2= n + sqrt(n+0.25) + 0.5;
113  return kTRUE;
114  }
115 
116  // create a function object to use
117  PoissonSum upper(n);
118  if(n > 0) {
119  PoissonSum lower(n-1);
120  return getInterval(&upper,&lower,(Double_t)n,1.0,mu1,mu2,nSigma);
121  }
122 
123  // Backup solution for negative numbers
124  return getInterval(&upper,0,(Double_t)n,1.0,mu1,mu2,nSigma);
125 }
126 
127 
128 ////////////////////////////////////////////////////////////////////////////////
129 /// Return 'nSigma' binomial confidence interval for (n,m). The result is return in asym1 and asym2.
130 /// If the return values is kFALSE and error occurred.
131 
133  Double_t &asym1, Double_t &asym2, Double_t nSigma) const
134 {
135  // sanity checks
136  if(n < 0 || m < 0) {
137  oocoutE((TObject*)0,Plotting) << "RooHistError::getPoissonInterval: cannot calculate interval for n,m = " << n << "," << m << endl;
138  return kFALSE;
139  }
140 
141  // handle the special case of no events in either category
142  if(n == 0 && m == 0) {
143  asym1= -1;
144  asym2= +1;
145  return kTRUE;
146  }
147 
148  // handle cases when n,m>100 (factorials in BinomialSum will overflow around 170)
149  if ((n>100&&m>100)) {
150  Double_t N = n ;
151  Double_t M = m ;
152  Double_t asym = 1.0*(N-M)/(N+M) ;
153  Double_t approxErr = sqrt(4.0*n/(N+M)*(1-N/(N+M))/(N+M)) ;
154 
155  asym1 = asym-nSigma*approxErr ;
156  asym2 = asym+nSigma*approxErr ;
157  return kTRUE ;
158  }
159 
160  // swap n and m to ensure that n <= m
161  Bool_t swapped(kFALSE);
162  if(n > m) {
163  swapped= kTRUE;
164  Int_t tmp(m);
165  m= n;
166  n= tmp;
167  }
168 
169  // create the function objects to use
171  BinomialSumAsym upper(n,m);
172  if(n > 0) {
173  BinomialSumAsym lower(n-1,m+1);
174  status= getInterval(&upper,&lower,(Double_t)(n-m)/(n+m),0.1,asym1,asym2,nSigma);
175  }
176  else {
177  status= getInterval(&upper,0,(Double_t)(n-m)/(n+m),0.1,asym1,asym2,nSigma);
178  }
179 
180  // undo the swap here
181  if(swapped) {
182  Double_t tmp(asym1);
183  asym1= -asym2;
184  asym2= -tmp;
185  }
186 
187  return status;
188 }
189 
190 
191 ////////////////////////////////////////////////////////////////////////////////
192 /// Return 'nSigma' binomial confidence interval for (n,m). The result is return in asym1 and asym2.
193 /// If the return values is kFALSE and error occurred.
194 
196  Double_t &asym1, Double_t &asym2, Double_t nSigma) const
197 {
198  // sanity checks
199  if(n < 0 || m < 0) {
200  oocoutE((TObject*)0,Plotting) << "RooHistError::getPoissonInterval: cannot calculate interval for n,m = " << n << "," << m << endl;
201  return kFALSE;
202  }
203 
204  // handle the special case of no events in either category
205  if(n == 0 && m == 0) {
206  asym1= -1;
207  asym2= +1;
208  return kTRUE;
209  }
210 
211  // handle cases when n,m>80 (factorials in BinomialSum will overflow around 170)
212  if ((n>80&&m>80)) {
213  Double_t N = n ;
214  Double_t M = m ;
215  Double_t asym = 1.0*(N)/(N+M) ;
216  Double_t approxErr = sqrt(4.0*n/(N+M)*(1-N/(N+M))/(N+M)) ;
217 
218  asym1 = asym-nSigma*0.5*approxErr ;
219  asym2 = asym+nSigma*0.5*approxErr ;
220  return kTRUE ;
221  }
222 
223  // swap n and m to ensure that n <= m
224  Bool_t swapped(kFALSE);
225  if(n > m) {
226  swapped= kTRUE;
227  Int_t tmp(m);
228  m= n;
229  n= tmp;
230  }
231 
232  // create the function objects to use
234  BinomialSumEff upper(n,m);
235  Double_t eff = (Double_t)(n)/(n+m) ;
236  if(n > 0) {
237  BinomialSumEff lower(n-1,m+1);
238  status= getInterval(&upper,&lower,eff,0.1,asym1,asym2,nSigma*0.5);
239  }
240  else {
241  status= getInterval(&upper,0,eff,0.1,asym1,asym2,nSigma*0.5);
242  }
243 
244  // undo the swap here
245  if(swapped) {
246  Double_t tmp(asym1);
247  asym1= 1-asym2;
248  asym2= 1-tmp;
249  }
250 
251  return status;
252 }
253 
254 
255 
256 ////////////////////////////////////////////////////////////////////////////////
257 /// Calculate a confidence interval using the cumulative functions provided.
258 /// The interval will be "central" when both cumulative functions are provided,
259 /// unless this would exclude the pointEstimate, in which case a one-sided interval
260 /// pinned at the point estimate is returned instead.
261 
262 Bool_t RooHistError::getInterval(const RooAbsFunc *Qu, const RooAbsFunc *Ql, Double_t pointEstimate,
263  Double_t stepSize, Double_t &lo, Double_t &hi, Double_t nSigma) const
264 {
265  // sanity checks
266  assert(0 != Qu || 0 != Ql);
267 
268  // convert number of sigma into a confidence level
269  Double_t beta= TMath::Erf(nSigma/sqrt(2.));
270  Double_t alpha= 0.5*(1-beta);
271 
272  // Does the central interval contain the point estimate?
273  Bool_t ok(kTRUE);
274  Double_t loProb(1),hiProb(0);
275  if(0 != Ql) loProb= (*Ql)(&pointEstimate);
276  if(0 != Qu) hiProb= (*Qu)(&pointEstimate);
277 
278  if (Qu && (0 == Ql || loProb > alpha + beta)) {
279  // Force the low edge to be at the pointEstimate
280  lo= pointEstimate;
281  Double_t target= loProb - beta;
282  hi= seek(*Qu,lo,+stepSize,target);
283  RooBrentRootFinder uFinder(*Qu);
284  ok= uFinder.findRoot(hi,hi-stepSize,hi,target);
285  }
286  else if(Ql && (0 == Qu || hiProb < alpha)) {
287  // Force the high edge to be at pointEstimate
288  hi= pointEstimate;
289  Double_t target= hiProb + beta;
290  lo= seek(*Ql,hi,-stepSize,target);
291  RooBrentRootFinder lFinder(*Ql);
292  ok= lFinder.findRoot(lo,lo,lo+stepSize,target);
293  }
294  else if (Qu && Ql) {
295  // use a central interval
296  lo= seek(*Ql,pointEstimate,-stepSize,alpha+beta);
297  hi= seek(*Qu,pointEstimate,+stepSize,alpha);
298  RooBrentRootFinder lFinder(*Ql),uFinder(*Qu);
299  ok= lFinder.findRoot(lo,lo,lo+stepSize,alpha+beta);
300  ok|= uFinder.findRoot(hi,hi-stepSize,hi,alpha);
301  }
302  if(!ok) oocoutE((TObject*)0,Plotting) << "RooHistError::getInterval: failed to find root(s)" << endl;
303 
304  return ok;
305 }
306 
307 
308 ////////////////////////////////////////////////////////////////////////////////
309 /// Scan f(x)-value until it changes sign. Start at the specified point and take constant
310 /// steps of the specified size. Give up after 1000 steps.
311 
313 {
314  Int_t steps(1000);
315  Double_t min(f.getMinLimit(1)),max(f.getMaxLimit(1));
316  Double_t x(startAt), f0= f(&startAt) - value;
317  do {
318  x+= step;
319  }
320  while(steps-- && (f0*(f(&x)-value) >= 0) && ((x-min)*(max-x) >= 0));
321  assert(0 != steps);
322  if(x < min) x= min;
323  if(x > max) x= max;
324 
325  return x;
326 }
327 
328 
329 
330 ////////////////////////////////////////////////////////////////////////////////
331 /// Create and return a PoissonSum function binding
332 
334 {
335  return new PoissonSum(n);
336 }
337 
338 
339 ////////////////////////////////////////////////////////////////////////////////
340 /// Create and return a BinomialSum function binding
341 
343 {
344  if (eff) {
345  return new BinomialSumEff(n,m) ;
346  } else {
347  return new BinomialSumAsym(n,m) ;
348  }
349 }
Bool_t getBinomialIntervalEff(Int_t n, Int_t m, Double_t &a1, Double_t &a2, Double_t nSigma=1) const
Return 'nSigma' binomial confidence interval for (n,m).
static Vc_ALWAYS_INLINE int_v min(const int_v &x, const int_v &y)
Definition: vector.h:433
#define assert(cond)
Definition: unittest.h:542
#define N
Double_t seek(const RooAbsFunc &f, Double_t startAt, Double_t step, Double_t value) const
Scan f(x)-value until it changes sign.
TAlienJobStatus * status
Definition: TAlienJob.cxx:51
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
const Bool_t kFALSE
Definition: Rtypes.h:92
static RooAbsFunc * createPoissonSum(Int_t n)
Create and return a PoissonSum function binding.
STL namespace.
static const float upper
Definition: main.cpp:49
Bool_t getBinomialIntervalAsym(Int_t n, Int_t m, Double_t &a1, Double_t &a2, Double_t nSigma=1) const
Return 'nSigma' binomial confidence interval for (n,m).
Bool_t getPoissonIntervalCalc(Int_t n, Double_t &mu1, Double_t &mu2, Double_t nSigma=1) const
Calculate a confidence interval for the expected number of events given n observed (unweighted) event...
double beta(double x, double y)
Calculates the beta function.
double sqrt(double)
Double_t x[n]
Definition: legend1.C:17
#define oocoutE(o, a)
Definition: RooMsgService.h:48
Bool_t getPoissonInterval(Int_t n, Double_t &mu1, Double_t &mu2, Double_t nSigma=1) const
Return a confidence interval for the expected number of events given n observed (unweighted) events...
Bool_t getInterval(const RooAbsFunc *Qu, const RooAbsFunc *Ql, Double_t pointEstimate, Double_t stepSize, Double_t &lo, Double_t &hi, Double_t nSigma) const
Calculate a confidence interval using the cumulative functions provided.
Double_t Erf(Double_t x)
Computation of the error function erf(x).
Definition: TMath.cxx:187
TMarker * m
Definition: textangle.C:8
virtual Double_t getMinLimit(UInt_t dimension) const =0
static const RooHistError & instance()
Return a reference to a singleton object that is created the first time this method is called...
RooHistError()
Construct our singleton object.
double f(double x)
virtual Double_t getMaxLimit(UInt_t dimension) const =0
double Double_t
Definition: RtypesCore.h:55
static Vc_ALWAYS_INLINE int_v max(const int_v &x, const int_v &y)
Definition: vector.h:440
Mother of all ROOT objects.
Definition: TObject.h:58
static RooAbsFunc * createBinomialSum(Int_t n, Int_t m, Bool_t eff)
Create and return a BinomialSum function binding.
virtual Bool_t findRoot(Double_t &result, Double_t xlo, Double_t xhi, Double_t value=0) const
Do the root finding using the Brent-Decker method.
ClassImp(RooHistError)
float type_of_call hi(const int &, const int &)
const Bool_t kTRUE
Definition: Rtypes.h:91
float value
Definition: math.cpp:443
const Int_t n
Definition: legend1.C:16
static const float lower
Definition: main.cpp:48