12 #if defined(__CINT__) && !defined(__MAKECINT__)
15 #include "../lib/libMathCore.so"
17 #include "../bin/libMathCore.dll"
23 #ifndef ROOT_Math_ProbFuncMathCore
24 #define ROOT_Math_ProbFuncMathCore
85 double beta_cdf(
double x,
double a,
double b);
159 double cauchy_cdf(
double x,
double b,
double x0 = 0);
231 double crystalball_cdf_c(
double x,
double alpha,
double n,
double sigma,
double x0 = 0);
364 double gamma_cdf(
double x,
double alpha,
double theta,
double x0 = 0);
395 double landau_cdf(
double x,
double xi = 1,
double x0 = 0);
453 double lognormal_cdf(
double x,
double m,
double s,
double x0 = 0);
473 double normal_cdf_c(
double x,
double sigma = 1,
double x0 = 0);
495 double normal_cdf(
double x,
double sigma = 1,
double x0 = 0);
497 inline double gaussian_cdf(
double x,
double sigma = 1,
double x0 = 0) {
558 double uniform_cdf_c(
double x,
double a,
double b,
double x0 = 0);
578 double uniform_cdf(
double x,
double a,
double b,
double x0 = 0);
625 double binomial_cdf(
unsigned int k,
double p,
unsigned int n);
652 #ifdef HAVE_OLD_STAT_FUNC
657 inline double breitwigner_prob(
double x,
double gamma,
double x0 = 0) {
660 inline double breitwigner_quant(
double x,
double gamma,
double x0 = 0) {
664 inline double cauchy_prob(
double x,
double b,
double x0 = 0) {
667 inline double cauchy_quant(
double x,
double b,
double x0 = 0) {
670 inline double chisquared_prob(
double x,
double r,
double x0 = 0) {
673 inline double chisquared_quant(
double x,
double r,
double x0 = 0) {
676 inline double exponential_prob(
double x,
double lambda,
double x0 = 0) {
679 inline double exponential_quant(
double x,
double lambda,
double x0 = 0) {
683 inline double gaussian_prob(
double x,
double sigma,
double x0 = 0) {
686 inline double gaussian_quant(
double x,
double sigma,
double x0 = 0) {
690 inline double lognormal_prob(
double x,
double m,
double s,
double x0 = 0) {
693 inline double lognormal_quant(
double x,
double m,
double s,
double x0 = 0) {
697 inline double normal_prob(
double x,
double sigma,
double x0 = 0) {
700 inline double normal_quant(
double x,
double sigma,
double x0 = 0) {
704 inline double uniform_prob(
double x,
double a,
double b,
double x0 = 0) {
707 inline double uniform_quant(
double x,
double a,
double b,
double x0 = 0) {
710 inline double fdistribution_prob(
double x,
double n,
double m,
double x0 = 0) {
713 inline double fdistribution_quant(
double x,
double n,
double m,
double x0 = 0) {
717 inline double gamma_prob(
double x,
double alpha,
double theta,
double x0 = 0) {
720 inline double gamma_quant(
double x,
double alpha,
double theta,
double x0 = 0) {
724 inline double tdistribution_prob(
double x,
double r,
double x0 = 0) {
728 inline double tdistribution_quant(
double x,
double r,
double x0 = 0) {
770 double landau_xm1(
double x,
double xi = 1,
double x0 = 0);
797 double landau_xm2(
double x,
double xi = 1,
double x0 = 0);
805 #endif // ROOT_Math_ProbFuncMathCore
807 #endif // if defined (__CINT__) && !defined(__MAKECINT__)
double tdistribution_cdf(double x, double r, double x0=0)
Cumulative distribution function of Student's t-distribution (lower tail).
double binomial_cdf(unsigned int k, double p, unsigned int n)
Cumulative distribution function of the Binomial distribution Lower tail of the integral of the binom...
double landau_cdf_c(double x, double xi=1, double x0=0)
Complement of the distribution function of the Landau distribution (upper tail).
double crystalball_cdf(double x, double alpha, double n, double sigma, double x0=0)
Cumulative distribution for the Crystal Ball distribution function.
double negative_binomial_cdf_c(unsigned int k, double p, double n)
Complement of the cumulative distribution function of the Negative Binomial distribution.
double poisson_cdf(unsigned int n, double mu)
Cumulative distribution function of the Poisson distribution Lower tail of the integral of the poisso...
double poisson_cdf_c(unsigned int n, double mu)
Complement of the cumulative distribution function of the Poisson distribution.
double binomial_cdf_c(unsigned int k, double p, unsigned int n)
Complement of the cumulative distribution function of the Binomial distribution.
double gamma_cdf_c(double x, double alpha, double theta, double x0=0)
Complement of the cumulative distribution function of the gamma distribution (upper tail)...
double uniform_cdf_c(double x, double a, double b, double x0=0)
Complement of the cumulative distribution function of the uniform (flat) distribution (upper tail)...
double landau_xm1(double x, double xi=1, double x0=0)
First moment (mean) of the truncated Landau distribution.
double lognormal_cdf(double x, double m, double s, double x0=0)
Cumulative distribution function of the lognormal distribution (lower tail).
double negative_binomial_cdf(unsigned int k, double p, double n)
Cumulative distribution function of the Negative Binomial distribution Lower tail of the integral of ...
double fdistribution_cdf_c(double x, double n, double m, double x0=0)
Complement of the cumulative distribution function of the F-distribution (upper tail).
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
double cauchy_cdf_c(double x, double b, double x0=0)
Complement of the cumulative distribution function (upper tail) of the Cauchy distribution which is a...
double fdistribution_cdf(double x, double n, double m, double x0=0)
Cumulative distribution function of the F-distribution (lower tail).
double uniform_cdf(double x, double a, double b, double x0=0)
Cumulative distribution function of the uniform (flat) distribution (lower tail). ...
double beta_cdf(double x, double a, double b)
Cumulative distribution function of the beta distribution Upper tail of the integral of the beta_pdf...
double breitwigner_cdf(double x, double gamma, double x0=0)
Cumulative distribution function (lower tail) of the Breit_Wigner distribution and it is similar (jus...
double landau_cdf(double x, double xi=1, double x0=0)
Cumulative distribution function of the Landau distribution (lower tail).
double landau_xm2(double x, double xi=1, double x0=0)
Second moment of the truncated Landau distribution.
double exponential_cdf_c(double x, double lambda, double x0=0)
Complement of the cumulative distribution function of the exponential distribution (upper tail)...
double cauchy_cdf(double x, double b, double x0=0)
Cumulative distribution function (lower tail) of the Cauchy distribution which is also Lorentzian dis...
double normal_cdf_c(double x, double sigma=1, double x0=0)
Complement of the cumulative distribution function of the normal (Gaussian) distribution (upper tail)...
double tdistribution_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of Student's t-distribution (upper tail)...
double gaussian_cdf_c(double x, double sigma=1, double x0=0)
Alternative name for same function.
double gaussian_cdf(double x, double sigma=1, double x0=0)
Alternative name for same function.
double beta_cdf_c(double x, double a, double b)
Complement of the cumulative distribution function of the beta distribution.
double gamma_cdf(double x, double alpha, double theta, double x0=0)
Cumulative distribution function of the gamma distribution (lower tail).
double chisquared_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of the distribution with degrees of freedom (upp...
double crystalball_integral(double x, double alpha, double n, double sigma, double x0=0)
Integral of the not-normalized Crystal Ball function.
double chisquared_cdf(double x, double r, double x0=0)
Cumulative distribution function of the distribution with degrees of freedom (lower tail)...
double breitwigner_cdf_c(double x, double gamma, double x0=0)
Complement of the cumulative distribution function (upper tail) of the Breit_Wigner distribution and ...
double crystalball_cdf_c(double x, double alpha, double n, double sigma, double x0=0)
Complement of the Cumulative distribution for the Crystal Ball distribution.
double lognormal_cdf_c(double x, double m, double s, double x0=0)
Complement of the cumulative distribution function of the lognormal distribution (upper tail)...
double exponential_cdf(double x, double lambda, double x0=0)
Cumulative distribution function of the exponential distribution (lower tail).