16 #ifndef ROOT_Math_GaussIntegrator
17 #define ROOT_Math_GaussIntegrator
19 #ifndef ROOT_Math_IFunction
23 #ifndef ROOT_Math_VirtualIntegrator
77 double Error ()
const;
205 double Integral (
const std::vector< double > &pts);
253 double DoEval(
double x,
double boundary,
int sign)
const;
double Error() const
Return the estimate of the absolute Error of the last Integral calculation.
Interface (abstract) class for 1D numerical integration It must be implemented by the concrate Integr...
virtual void SetAbsTolerance(double eps)
This method is not implemented.
double IntegralUp(double a)
Returns Integral of function on an upper semi-infinite interval.
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
double Integral()
Returns Integral of function on an infinite interval.
GaussIntegrator(double absTol=-1, double relTol=-1)
Default Constructor.
virtual double DoIntegral(double a, double b, const IGenFunction *func)
Integration surrugate method.
double IntegralLow(double b)
Returns Integral of function on a lower semi-infinite interval.
virtual void SetRelTolerance(double eps)
Set the desired relative Error.
double IntegralCauchy(double a, double b, double c)
This method is not implemented.
void AbsValue(bool flag)
Static function: set the fgAbsValue flag.
virtual ~GaussIntegrator()
Destructor.
Numerical one dimensional integration options.
virtual void SetOptions(const ROOT::Math::IntegratorOneDimOptions &opt)
set the options (should be re-implemented by derived classes -if more options than tolerance exist ...
User class for performing function integration.
void SetFunction(const IGenFunction &)
Set integration function (flag control if function must be copied inside).
double func(double *x, double *p)
virtual ROOT::Math::IntegratorOneDimOptions Options() const
get the option used for the integration
int Status() const
return the status of the last integration - 0 in case of success
double Result() const
Returns the result of the last Integral calculation.
const IGenFunction * fFunction