#include <vector>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <functional>
#include <tuple>
#include <cmath>
#include <cassert>
#include <random>
#include <thread>
#include <future>
#include <type_traits>
#include <string>
#include <utility>
#include "Pattern.h"
#include "Monitoring.h"
#include "TApplication.h"
#include "Timer.h"
#include "TH1F.h"
#include "TH2F.h"
#include <fenv.h>
#include "TMVA/NeuralNet.icc"
Classes | |
class | TMVA::DNN::Batch |
The Batch class encapsulates one mini-batch. More... | |
class | TMVA::DNN::ClassificationSettings |
Settings for classificationused to distinguish between different function signatures. More... | |
class | TMVA::DNN::Layer |
Layer defines the layout of a layer. More... | |
class | TMVA::DNN::LayerData |
LayerData holds the data of one layer. More... | |
class | TMVA::DNN::MeanVariance |
class | TMVA::DNN::Net |
neural net More... | |
class | TMVA::DNN::Settings |
Settings for the training of the neural net. More... | |
class | TMVA::DNN::Steepest |
Steepest Gradient Descent algorithm (SGD) More... | |
Namespaces | |
namespace | TMVA |
create variable transformations | |
namespace | TMVA::DNN |
Typedefs | |
typedef std::vector< char > | TMVA::DNN::DropContainer |
typedef std::tuple< Settings &, Batch &, DropContainer & > | TMVA::DNN::pass_through_type |
An implementation of a neural net for TMVA. This neural net uses multithreading
Definition in file NeuralNet.h.