| 
| template<typename ItValue , typename ItFunction >  | 
| void  | TMVA::DNN::applyFunctions (ItValue itValue, ItValue itValueEnd, ItFunction itFunction) | 
|   | 
| template<typename ItValue , typename ItFunction , typename ItInverseFunction , typename ItGradient >  | 
| void  | TMVA::DNN::applyFunctions (ItValue itValue, ItValue itValueEnd, ItFunction itFunction, ItInverseFunction itInverseFunction, ItGradient itGradient) | 
|   | 
| template<typename ItSource , typename ItWeight , typename ItTarget >  | 
| void  | TMVA::DNN::applyWeights (ItSource itSourceBegin, ItSource itSourceEnd, ItWeight itWeight, ItTarget itTargetBegin, ItTarget itTargetEnd) | 
|   | 
| template<typename ItSource , typename ItWeight , typename ItPrev >  | 
| void  | TMVA::DNN::applyWeightsBackwards (ItSource itCurrBegin, ItSource itCurrEnd, ItWeight itWeight, ItPrev itPrevBegin, ItPrev itPrevEnd) | 
|   | 
| template<typename LAYERDATA >  | 
| void  | TMVA::DNN::backward (LAYERDATA &prevLayerData, LAYERDATA &currLayerData) | 
|   | backward application of the weights (back-propagation of the error)  
  | 
|   | 
| template<typename ItProbability , typename ItTruth , typename ItDelta , typename ItInvActFnc >  | 
| double  | TMVA::DNN::crossEntropy (ItProbability itProbabilityBegin, ItProbability itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) | 
|   | cross entropy error function  
  | 
|   | 
| template<typename LAYERDATA >  | 
| void  | TMVA::DNN::forward (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData) | 
|   | apply the weights (and functions) in forward direction of the DNN  
  | 
|   | 
| double  | TMVA::DNN::gaussDouble (double mean, double sigma) | 
|   | 
| template<typename T >  | 
| bool  | TMVA::DNN::isFlagSet (T flag, T value) | 
|   | 
| ModeOutputValues  | TMVA::DNN::operator& (ModeOutputValues lhs, ModeOutputValues rhs) | 
|   | 
| ModeOutputValues  | TMVA::DNN::operator&= (ModeOutputValues &lhs, ModeOutputValues rhs) | 
|   | 
| ModeOutputValues  | TMVA::DNN::operator| (ModeOutputValues lhs, ModeOutputValues rhs) | 
|   | 
| ModeOutputValues  | TMVA::DNN::operator|= (ModeOutputValues &lhs, ModeOutputValues rhs) | 
|   | 
| int  | TMVA::DNN::randomInt (int maxValue) | 
|   | 
| template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc >  | 
| double  | TMVA::DNN::softMaxCrossEntropy (ItOutput itProbabilityBegin, ItOutput itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) | 
|   | soft-max-cross-entropy error function (for mutual exclusive cross-entropy)  
  | 
|   | 
| template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc >  | 
| double  | TMVA::DNN::sumOfSquares (ItOutput itOutputBegin, ItOutput itOutputEnd, ItTruth itTruthBegin, ItTruth itTruthEnd, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc itInvActFnc, double patternWeight) | 
|   | 
| double  | TMVA::DNN::uniformDouble (double minValue, double maxValue) | 
|   | 
| template<typename LAYERDATA >  | 
| void  | TMVA::DNN::update (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData, double factorWeightDecay, EnumRegularization regularization) | 
|   | update the node values  
  | 
|   | 
| template<typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient >  | 
| void  | TMVA::DNN::update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient) | 
|   | update the gradients  
  | 
|   | 
| template<EnumRegularization Regularization, typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient , typename ItWeight >  | 
| void  | TMVA::DNN::update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient, ItWeight itWeight, double weightDecay) | 
|   | update the gradients, using regularization  
  | 
|   | 
| template<typename ItWeight >  | 
| double  | TMVA::DNN::weightDecay (double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization) | 
|   | compute the weight decay for regularization (L1 or L2)  
  | 
|   | 
- Author
 - Peter Speckmayer 
 
- Version
 - 1.0
 
LICENSE
net implementation
An implementation of a neural net for TMVA. This neural net uses multithreading 
Definition in file NeuralNet.h.