45 TMVA::MethodBayesClassifier::MethodBayesClassifier( const
TString& jobName,
50 TMVA::MethodBase( jobName, Types::kBayesClassifier, methodTitle, theData, theOption, theTargetDir )
112 Log() <<
kFATAL <<
"Please implement writing of weights as XML" <<
Endl;
130 NoErrorCalc(err, errUpper);
140 fout <<
" // not implemented for class: \"" << className <<
"\"" << std::endl;
141 fout <<
"};" << std::endl;
MsgLogger & Endl(MsgLogger &ml)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value for given event
virtual ~MethodBayesClassifier(void)
destructor
void ProcessOptions()
the option string is decoded, for availabel options see "DeclareOptions"
void Init(void)
default initialisation
void ReadWeightsFromStream(std::istream &istr)
read back the training results from a file (stream)
void GetHelpMessage() const
get help message text
Describe directory structure in memory.
void Train(void)
some training
#define REGISTER_METHOD(CLASS)
for example
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
Abstract ClassifierFactory template that handles arbitrary types.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Variable can handle classification with 2 classes.
void DeclareOptions()
define the options (their key words) that can be set in the option string
void AddWeightsXMLTo(void *parent) const
ClassImp(TMVA::MethodBayesClassifier) TMVA
standard constructor
MethodBayesClassifier(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="", TDirectory *theTargetDir=0)