ROOT  6.06/09
Reference Guide
MethodBDT.h
Go to the documentation of this file.
1 // @(#)root/tmva $Id$
2 // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss, Jan Therhaag
3 
4 /**********************************************************************************
5  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6  * Package: TMVA *
7  * Class : MethodBDT (Boosted Decision Trees) *
8  * Web : http://tmva.sourceforge.net *
9  * *
10  * Description: *
11  * Analysis of Boosted Decision Trees *
12  * *
13  * Authors (alphabetical): *
14  * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
15  * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
16  * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
17  * Doug Schouten <dschoute@sfu.ca> - Simon Fraser U., Canada *
18  * Jan Therhaag <jan.therhaag@cern.ch> - U. of Bonn, Germany *
19  * *
20  * Copyright (c) 2005-2011: *
21  * CERN, Switzerland *
22  * U. of Victoria, Canada *
23  * MPI-K Heidelberg, Germany *
24  * U. of Bonn, Germany *
25  * *
26  * Redistribution and use in source and binary forms, with or without *
27  * modification, are permitted according to the terms listed in LICENSE *
28  * (http://tmva.sourceforge.net/LICENSE) *
29  **********************************************************************************/
30 
31 #ifndef ROOT_TMVA_MethodBDT
32 #define ROOT_TMVA_MethodBDT
33 
34 //////////////////////////////////////////////////////////////////////////
35 // //
36 // MethodBDT //
37 // //
38 // Analysis of Boosted Decision Trees //
39 // //
40 //////////////////////////////////////////////////////////////////////////
41 
42 #include <vector>
43 #ifndef ROOT_TH2
44 #include "TH2.h"
45 #endif
46 #ifndef ROOT_TTree
47 #include "TTree.h"
48 #endif
49 #ifndef ROOT_TMVA_MethodBase
50 #include "TMVA/MethodBase.h"
51 #endif
52 #ifndef ROOT_TMVA_DecisionTree
53 #include "TMVA/DecisionTree.h"
54 #endif
55 #ifndef ROOT_TMVA_Event
56 #include "TMVA/Event.h"
57 #endif
58 
59 namespace TMVA {
60 
61  class SeparationBase;
62 
63  class MethodBDT : public MethodBase {
64 
65  public:
66  // constructor for training and reading
67  MethodBDT( const TString& jobName,
68  const TString& methodTitle,
69  DataSetInfo& theData,
70  const TString& theOption = "",
71  TDirectory* theTargetDir = 0 );
72 
73  // constructor for calculating BDT-MVA using previously generatad decision trees
74  MethodBDT( DataSetInfo& theData,
75  const TString& theWeightFile,
76  TDirectory* theTargetDir = NULL );
77 
78  virtual ~MethodBDT( void );
79 
80  virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets );
81 
82 
83  // write all Events from the Tree into a vector of Events, that are
84  // more easily manipulated
85  void InitEventSample();
86 
87  // optimize tuning parameters
88  virtual std::map<TString,Double_t> OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="FitGA");
89  virtual void SetTuneParameters(std::map<TString,Double_t> tuneParameters);
90 
91  // training method
92  void Train( void );
93 
94  // revoke training
95  void Reset( void );
96 
98 
99  // write weights to file
100  void AddWeightsXMLTo( void* parent ) const;
101 
102  // read weights from file
103  void ReadWeightsFromStream( std::istream& istr );
104  void ReadWeightsFromXML(void* parent);
105 
106  // write method specific histos to target file
107  void WriteMonitoringHistosToFile( void ) const;
108 
109  // calculate the MVA value
110  Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0);
111 
112  // get the actual forest size (might be less than fNTrees, the requested one, if boosting is stopped early
113  UInt_t GetNTrees() const {return fForest.size();}
114  private:
115  Double_t GetMvaValue( Double_t* err, Double_t* errUpper, UInt_t useNTrees );
116  Double_t PrivateGetMvaValue( const TMVA::Event *ev, Double_t* err=0, Double_t* errUpper=0, UInt_t useNTrees=0 );
117  void BoostMonitor(Int_t iTree);
118 
119  public:
120  const std::vector<Float_t>& GetMulticlassValues();
121 
122  // regression response
123  const std::vector<Float_t>& GetRegressionValues();
124 
125  // apply the boost algorithm to a tree in the collection
126  Double_t Boost( std::vector<const TMVA::Event*>&, DecisionTree *dt, UInt_t cls = 0);
127 
128  // ranking of input variables
129  const Ranking* CreateRanking();
130 
131  // the option handling methods
132  void DeclareOptions();
133  void ProcessOptions();
135  void SetMinNodeSize(Double_t sizeInPercent);
136  void SetMinNodeSize(TString sizeInPercent);
137 
138  void SetNTrees(Int_t d){fNTrees = d;}
144 
145 
146  // get the forest
147  inline const std::vector<TMVA::DecisionTree*> & GetForest() const;
148 
149  // get the forest
150  inline const std::vector<const TMVA::Event*> & GetTrainingEvents() const;
151 
152  inline const std::vector<double> & GetBoostWeights() const;
153 
154  //return the individual relative variable importance
155  std::vector<Double_t> GetVariableImportance();
157 
159 
160  // make ROOT-independent C++ class for classifier response (classifier-specific implementation)
161  void MakeClassSpecific( std::ostream&, const TString& ) const;
162 
163  // header and auxiliary classes
164  void MakeClassSpecificHeader( std::ostream&, const TString& ) const;
165 
166  void MakeClassInstantiateNode( DecisionTreeNode *n, std::ostream& fout,
167  const TString& className ) const;
168 
169  void GetHelpMessage() const;
170 
171  protected:
173 
174  private:
175  // Init used in the various constructors
176  void Init( void );
177 
179 
180  // boosting algorithm (adaptive boosting)
181  Double_t AdaBoost( std::vector<const TMVA::Event*>&, DecisionTree *dt );
182 
183  // boosting algorithm (adaptive boosting with cost matrix)
184  Double_t AdaCost( std::vector<const TMVA::Event*>&, DecisionTree *dt );
185 
186  // boosting as a random re-weighting
187  Double_t Bagging( );
188 
189  // boosting special for regression
190  Double_t RegBoost( std::vector<const TMVA::Event*>&, DecisionTree *dt );
191 
192  // adaboost adapted to regression
193  Double_t AdaBoostR2( std::vector<const TMVA::Event*>&, DecisionTree *dt );
194 
195  // binomial likelihood gradient boost for classification
196  // (see Friedman: "Greedy Function Approximation: a Gradient Boosting Machine"
197  // Technical report, Dept. of Statistics, Stanford University)
198  Double_t GradBoost( std::vector<const TMVA::Event*>&, DecisionTree *dt, UInt_t cls = 0);
199  Double_t GradBoostRegression(std::vector<const TMVA::Event*>&, DecisionTree *dt );
200  void InitGradBoost( std::vector<const TMVA::Event*>&);
201  void UpdateTargets( std::vector<const TMVA::Event*>&, UInt_t cls = 0);
202  void UpdateTargetsRegression( std::vector<const TMVA::Event*>&,Bool_t first=kFALSE);
203  Double_t GetGradBoostMVA(const TMVA::Event *e, UInt_t nTrees);
204  void GetBaggedSubSample(std::vector<const TMVA::Event*>&);
205  Double_t GetWeightedQuantile(std::vector<std::pair<Double_t, Double_t> > vec, const Double_t quantile, const Double_t SumOfWeights = 0.0);
206 
207  std::vector<const TMVA::Event*> fEventSample; // the training events
208  std::vector<const TMVA::Event*> fValidationSample;// the Validation events
209  std::vector<const TMVA::Event*> fSubSample; // subsample for bagged grad boost
210  std::vector<const TMVA::Event*> *fTrainSample; // pointer to sample actually used in training (fEventSample or fSubSample) for example
211 
212  Int_t fNTrees; // number of decision trees requested
213  std::vector<DecisionTree*> fForest; // the collection of decision trees
214  std::vector<double> fBoostWeights; // the weights applied in the individual boosts
215  Double_t fSigToBkgFraction;// Signal to Background fraction assumed during training
216  TString fBoostType; // string specifying the boost type
217  Double_t fAdaBoostBeta; // beta parameter for AdaBoost algorithm
218  TString fAdaBoostR2Loss; // loss type used in AdaBoostR2 (Linear,Quadratic or Exponential)
219  Double_t fTransitionPoint; // break-down point for gradient regression
220  Double_t fShrinkage; // learning rate for gradient boost;
221  Bool_t fBaggedBoost; // turn bagging in combination with boost on/off
222  Bool_t fBaggedGradBoost; // turn bagging in combination with grad boost on/off
223  Double_t fSumOfWeights; // sum of all event weights
224  std::map< const TMVA::Event*, std::pair<Double_t, Double_t> > fWeightedResiduals; // weighted regression residuals
225  std::map< const TMVA::Event*,std::vector<double> > fResiduals; // individual event residuals for gradient boost
226 
227  //options for the decision Tree
228  SeparationBase *fSepType; // the separation used in node splitting
229  TString fSepTypeS; // the separation (option string) used in node splitting
230  Int_t fMinNodeEvents; // min number of events in node
231  Float_t fMinNodeSize; // min percentage of training events in node
232  TString fMinNodeSizeS; // string containing min percentage of training events in node
233 
234  Int_t fNCuts; // grid used in cut applied in node splitting
235  Bool_t fUseFisherCuts; // use multivariate splits using the Fisher criterium
236  Double_t fMinLinCorrForFisher; // the minimum linear correlation between two variables demanded for use in fisher criterium in node splitting
237  Bool_t fUseExclusiveVars; // individual variables already used in fisher criterium are not anymore analysed individually for node splitting
238  Bool_t fUseYesNoLeaf; // use sig or bkg classification in leave nodes or sig/bkg
239  Double_t fNodePurityLimit; // purity limit for sig/bkg nodes
240  UInt_t fNNodesMax; // max # of nodes
241  UInt_t fMaxDepth; // max depth
242 
243  DecisionTree::EPruneMethod fPruneMethod; // method used for prunig
244  TString fPruneMethodS; // prune method option String
245  Double_t fPruneStrength; // a parameter to set the "amount" of pruning..needs to be adjusted
246  Double_t fFValidationEvents; // fraction of events to use for pruning
247  Bool_t fAutomatic; // use user given prune strength or automatically determined one using a validation sample
248  Bool_t fRandomisedTrees; // choose a random subset of possible cut variables at each node during training
249  UInt_t fUseNvars; // the number of variables used in the randomised tree splitting
250  Bool_t fUsePoissonNvars; // use "fUseNvars" not as fixed number but as mean of a possion distr. in each split
251  UInt_t fUseNTrainEvents; // number of randomly picked training events used in randomised (and bagged) trees
252 
253  Double_t fBaggedSampleFraction; // relative size of bagged event sample to original sample size
254  TString fNegWeightTreatment; // variable that holds the option of how to treat negative event weights in training
255  Bool_t fNoNegWeightsInTraining; // ignore negative event weights in the training
256  Bool_t fInverseBoostNegWeights; // boost ev. with neg. weights with 1/boostweight rathre than boostweight
257  Bool_t fPairNegWeightsGlobal; // pair ev. with neg. and pos. weights in traning sample and "annihilate" them
258  Bool_t fTrainWithNegWeights; // yes there are negative event weights and we don't ignore them
259  Bool_t fDoBoostMonitor; //create control plot with ROC integral vs tree number
260 
261 
262  //some histograms for monitoring
263  TTree* fMonitorNtuple; // monitoring ntuple
264  Int_t fITree; // ntuple var: ith tree
265  Double_t fBoostWeight; // ntuple var: boost weight
266  Double_t fErrorFraction; // ntuple var: misclassification error fraction
267 
268  Double_t fCss; // Cost factor
269  Double_t fCts_sb; // Cost factor
270  Double_t fCtb_ss; // Cost factor
271  Double_t fCbb; // Cost factor
272 
273  Bool_t fDoPreselection; // do or do not perform automatic pre-selection of 100% eff. cuts
274 
275  std::vector<Double_t> fVariableImportance; // the relative importance of the different variables
276 
277 
278  void DeterminePreselectionCuts(const std::vector<const TMVA::Event*>& eventSample);
280 
281  std::vector<Double_t> fLowSigCut;
282  std::vector<Double_t> fLowBkgCut;
283  std::vector<Double_t> fHighSigCut;
284  std::vector<Double_t> fHighBkgCut;
285 
286  std::vector<Bool_t> fIsLowSigCut;
287  std::vector<Bool_t> fIsLowBkgCut;
288  std::vector<Bool_t> fIsHighSigCut;
289  std::vector<Bool_t> fIsHighBkgCut;
290 
291  Bool_t fHistoricBool; //historic variable, only needed for "CompatibilityOptions"
292 
293 
294  // debugging flags
295  static const Int_t fgDebugLevel; // debug level determining some printout/control plots etc.
296 
297  // for backward compatibility
298 
299  ClassDef(MethodBDT,0) // Analysis of Boosted Decision Trees
300  };
301 
302 } // namespace TMVA
303 
304 const std::vector<TMVA::DecisionTree*>& TMVA::MethodBDT::GetForest() const { return fForest; }
305 const std::vector<const TMVA::Event*> & TMVA::MethodBDT::GetTrainingEvents() const { return fEventSample; }
306 const std::vector<double>& TMVA::MethodBDT::GetBoostWeights() const { return fBoostWeights; }
307 
308 #endif
Bool_t fUseYesNoLeaf
Definition: MethodBDT.h:238
Double_t AdaCost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
the AdaCost boosting algorithm takes a simple cost Matrix (currently fixed for all events...
Definition: MethodBDT.cxx:1884
void Train(void)
BDT training.
Definition: MethodBDT.cxx:1093
void PreProcessNegativeEventWeights()
o.k.
Definition: MethodBDT.cxx:882
Double_t AdaBoostR2(std::vector< const TMVA::Event * > &, DecisionTree *dt)
adaption of the AdaBoost to regression problems (see H.Drucker 1997)
Definition: MethodBDT.cxx:2056
const std::vector< double > & GetBoostWeights() const
Definition: MethodBDT.h:306
const std::vector< TMVA::DecisionTree * > & GetForest() const
Definition: MethodBDT.h:304
Double_t Boost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
apply the boosting alogrithim (the algorithm is selecte via the the "option" given in the constructor...
Definition: MethodBDT.cxx:1575
void WriteMonitoringHistosToFile(void) const
Here we could write some histograms created during the processing to the output file.
Definition: MethodBDT.cxx:2478
std::vector< Bool_t > fIsLowSigCut
Definition: MethodBDT.h:286
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
Definition: MethodBDT.cxx:423
Bool_t fPairNegWeightsGlobal
Definition: MethodBDT.h:257
void SetUseNvars(Int_t n)
Definition: MethodBDT.h:142
Bool_t fRandomisedTrees
Definition: MethodBDT.h:248
TString fMinNodeSizeS
Definition: MethodBDT.h:232
void AddWeightsXMLTo(void *parent) const
write weights to XML
Definition: MethodBDT.cxx:2173
Double_t GradBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt, UInt_t cls=0)
Calculate the desired response value for each region.
Definition: MethodBDT.cxx:1445
const Ranking * CreateRanking()
Compute ranking of input variables.
Definition: MethodBDT.cxx:2533
Double_t fSumOfWeights
Definition: MethodBDT.h:223
void MakeClassSpecificHeader(std::ostream &, const TString &) const
specific class header
Definition: MethodBDT.cxx:2686
float Float_t
Definition: RtypesCore.h:53
TString fPruneMethodS
Definition: MethodBDT.h:244
TString fSepTypeS
Definition: MethodBDT.h:229
TTree * fMonitorNtuple
Definition: MethodBDT.h:263
Double_t fAdaBoostBeta
Definition: MethodBDT.h:217
std::vector< Bool_t > fIsHighSigCut
Definition: MethodBDT.h:288
void DeclareOptions()
define the options (their key words) that can be set in the option string know options: nTrees number...
Definition: MethodBDT.cxx:311
std::vector< Double_t > fVariableImportance
Definition: MethodBDT.h:275
EAnalysisType
Definition: Types.h:124
Double_t fMinLinCorrForFisher
Definition: MethodBDT.h:236
std::vector< const TMVA::Event * > fEventSample
Definition: MethodBDT.h:207
Double_t Bagging()
call it boot-strapping, re-sampling or whatever you like, in the end it is nothing else but applying ...
Definition: MethodBDT.cxx:2002
Bool_t fBaggedGradBoost
Definition: MethodBDT.h:222
Bool_t fDoBoostMonitor
Definition: MethodBDT.h:259
Basic string class.
Definition: TString.h:137
std::map< const TMVA::Event *, std::pair< Double_t, Double_t > > fWeightedResiduals
Definition: MethodBDT.h:224
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
const Bool_t kFALSE
Definition: Rtypes.h:92
void DeterminePreselectionCuts(const std::vector< const TMVA::Event * > &eventSample)
find useful preselection cuts that will be applied before and Decision Tree training.
Definition: MethodBDT.cxx:2843
void ProcessOptions()
the option string is decoded, for available options see "DeclareOptions"
Definition: MethodBDT.cxx:442
void UpdateTargetsRegression(std::vector< const TMVA::Event * > &, Bool_t first=kFALSE)
Calculate current residuals for all events and update targets for next iteration. ...
Definition: MethodBDT.cxx:1399
Bool_t fBaggedBoost
Definition: MethodBDT.h:221
Double_t GetWeightedQuantile(std::vector< std::pair< Double_t, Double_t > > vec, const Double_t quantile, const Double_t SumOfWeights=0.0)
calculates the quantile of the distribution of the first pair entries weighted with the values in the...
Definition: MethodBDT.cxx:1430
std::vector< Bool_t > fIsHighBkgCut
Definition: MethodBDT.h:289
void SetShrinkage(Double_t s)
Definition: MethodBDT.h:141
Bool_t fAutomatic
Definition: MethodBDT.h:247
Double_t fCts_sb
Definition: MethodBDT.h:269
Double_t fBoostWeight
Definition: MethodBDT.h:265
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Definition: MethodBDT.cxx:2306
void GetHelpMessage() const
Get help message text.
Definition: MethodBDT.cxx:2553
Double_t fPruneStrength
Definition: MethodBDT.h:245
std::vector< Double_t > fHighBkgCut
Definition: MethodBDT.h:284
Double_t GetGradBoostMVA(const TMVA::Event *e, UInt_t nTrees)
returns MVA value: -1 for background, 1 for signal
Definition: MethodBDT.cxx:1352
Double_t fBaggedSampleFraction
Definition: MethodBDT.h:253
Bool_t fInverseBoostNegWeights
Definition: MethodBDT.h:256
UInt_t GetNTrees() const
Definition: MethodBDT.h:113
virtual void SetTuneParameters(std::map< TString, Double_t > tuneParameters)
set the tuning parameters accoding to the argument
Definition: MethodBDT.cxx:1071
#define ClassDef(name, id)
Definition: Rtypes.h:254
Double_t fSigToBkgFraction
Definition: MethodBDT.h:215
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
BDT can handle classification with multiple classes and regression with one regression-target.
Definition: MethodBDT.cxx:266
Bool_t fDoPreselection
Definition: MethodBDT.h:273
void Reset(void)
reset the method, as if it had just been instantiated (forget all training etc.)
Definition: MethodBDT.cxx:680
Double_t RegBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
a special boosting only for Regression ...
Definition: MethodBDT.cxx:2048
void SetMinNodeSize(Double_t sizeInPercent)
Definition: MethodBDT.cxx:614
TString fAdaBoostR2Loss
Definition: MethodBDT.h:218
Int_t fMinNodeEvents
Definition: MethodBDT.h:230
void SetNTrees(Int_t d)
Definition: MethodBDT.h:138
std::vector< Double_t > fHighSigCut
Definition: MethodBDT.h:283
void MakeClassInstantiateNode(DecisionTreeNode *n, std::ostream &fout, const TString &className) const
recursively descends a tree and writes the node instance to the output streem
Definition: MethodBDT.cxx:2797
Double_t fCtb_ss
Definition: MethodBDT.h:270
Double_t fTransitionPoint
Definition: MethodBDT.h:219
const std::vector< Float_t > & GetMulticlassValues()
get the multiclass MVA response for the BDT classifier
Definition: MethodBDT.cxx:2357
Double_t GradBoostRegression(std::vector< const TMVA::Event * > &, DecisionTree *dt)
Implementation of M_TreeBoost using a Huber loss function as desribed by Friedman 1999...
Definition: MethodBDT.cxx:1476
Float_t fMinNodeSize
Definition: MethodBDT.h:231
void InitGradBoost(std::vector< const TMVA::Event * > &)
initialize targets for first tree
Definition: MethodBDT.cxx:1506
Bool_t fNoNegWeightsInTraining
Definition: MethodBDT.h:255
const std::vector< Float_t > & GetRegressionValues()
get the regression value generated by the BDTs
Definition: MethodBDT.cxx:2392
void InitEventSample()
initialize the event sample (i.e. reset the boost-weights... etc)
Definition: MethodBDT.cxx:716
std::vector< Bool_t > fIsLowBkgCut
Definition: MethodBDT.h:287
Double_t fErrorFraction
Definition: MethodBDT.h:266
std::vector< Double_t > fLowBkgCut
Definition: MethodBDT.h:282
Double_t fNodePurityLimit
Definition: MethodBDT.h:239
Bool_t fHistoricBool
Definition: MethodBDT.h:291
void SetBaggedSampleFraction(Double_t f)
Definition: MethodBDT.h:143
void BoostMonitor(Int_t iTree)
fills the ROCIntegral vs Itree from the testSample for the monitoring plots during the training ...
Definition: MethodBDT.cxx:1609
Bool_t fTrainWithNegWeights
Definition: MethodBDT.h:258
virtual ~MethodBDT(void)
destructor Note: fEventSample and ValidationSample are already deleted at the end of TRAIN When they ...
Definition: MethodBDT.cxx:708
void SetNodePurityLimit(Double_t l)
Definition: MethodBDT.h:140
Double_t PrivateGetMvaValue(const TMVA::Event *ev, Double_t *err=0, Double_t *errUpper=0, UInt_t useNTrees=0)
Return the MVA value (range [-1;1]) that classifies the event according to the majority vote from the...
Definition: MethodBDT.cxx:2330
unsigned int UInt_t
Definition: RtypesCore.h:42
TLine * l
Definition: textangle.C:4
Double_t fCbb
Definition: MethodBDT.h:271
SeparationBase * fSepType
Definition: MethodBDT.h:228
void Init(void)
common initialisation with defaults for the BDT-Method
Definition: MethodBDT.cxx:642
void ReadWeightsFromXML(void *parent)
reads the BDT from the xml file
Definition: MethodBDT.cxx:2204
Bool_t fUseExclusiveVars
Definition: MethodBDT.h:237
Double_t AdaBoost(std::vector< const TMVA::Event * > &, DecisionTree *dt)
the AdaBoost implementation.
Definition: MethodBDT.cxx:1703
Double_t TestTreeQuality(DecisionTree *dt)
test the tree quality.. in terms of Miscalssification
Definition: MethodBDT.cxx:1554
DecisionTree::EPruneMethod fPruneMethod
Definition: MethodBDT.h:243
UInt_t fUseNvars
Definition: MethodBDT.h:249
UInt_t fMaxDepth
Definition: MethodBDT.h:241
double f(double x)
void ReadWeightsFromStream(std::istream &istr)
read the weights (BDT coefficients)
Definition: MethodBDT.cxx:2271
double Double_t
Definition: RtypesCore.h:55
Double_t ApplyPreselectionCuts(const Event *ev)
aply the preselection cuts before even bothing about any Decision Trees in the GetMVA ...
Definition: MethodBDT.cxx:2943
void UpdateTargets(std::vector< const TMVA::Event * > &, UInt_t cls=0)
Calculate residua for all events;.
Definition: MethodBDT.cxx:1366
const std::vector< const TMVA::Event * > & GetTrainingEvents() const
Definition: MethodBDT.h:305
Describe directory structure in memory.
Definition: TDirectory.h:41
void SetMaxDepth(Int_t d)
Definition: MethodBDT.h:134
int type
Definition: TGX11.cxx:120
Double_t fShrinkage
Definition: MethodBDT.h:220
Bool_t fUsePoissonNvars
Definition: MethodBDT.h:250
void SetAdaBoostBeta(Double_t b)
Definition: MethodBDT.h:139
std::vector< const TMVA::Event * > * fTrainSample
Definition: MethodBDT.h:210
TString fBoostType
Definition: MethodBDT.h:216
Bool_t fUseFisherCuts
Definition: MethodBDT.h:235
UInt_t fUseNTrainEvents
Definition: MethodBDT.h:251
virtual std::map< TString, Double_t > OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="FitGA")
call the Optimzier with the set of paremeters and ranges that are meant to be tuned.
Definition: MethodBDT.cxx:1020
TString fNegWeightTreatment
Definition: MethodBDT.h:254
Abstract ClassifierFactory template that handles arbitrary types.
void GetBaggedSubSample(std::vector< const TMVA::Event * > &)
fills fEventSample with fBaggedSampleFraction*NEvents random training events
Definition: MethodBDT.cxx:2013
MethodBDT(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="", TDirectory *theTargetDir=0)
std::vector< const TMVA::Event * > fValidationSample
Definition: MethodBDT.h:208
#define NULL
Definition: Rtypes.h:82
std::vector< DecisionTree * > fForest
Definition: MethodBDT.h:213
std::vector< Double_t > GetVariableImportance()
Return the relative variable importance, normalized to all variables together having the importance 1...
Definition: MethodBDT.cxx:2493
Double_t fFValidationEvents
Definition: MethodBDT.h:246
std::vector< Double_t > fLowSigCut
Definition: MethodBDT.h:281
A TTree object has a header with a name and a title.
Definition: TTree.h:94
std::map< const TMVA::Event *, std::vector< double > > fResiduals
Definition: MethodBDT.h:225
static const Int_t fgDebugLevel
Definition: MethodBDT.h:295
virtual void ReadWeightsFromStream(std::istream &)=0
Double_t fCss
Definition: MethodBDT.h:268
const Int_t n
Definition: legend1.C:16
std::vector< const TMVA::Event * > fSubSample
Definition: MethodBDT.h:209
void MakeClassSpecific(std::ostream &, const TString &) const
make ROOT-independent C++ class for classifier response (classifier-specific implementation) ...
Definition: MethodBDT.cxx:2610
UInt_t fNNodesMax
Definition: MethodBDT.h:240
std::vector< double > fBoostWeights
Definition: MethodBDT.h:214