Python wrapper for Fit functions
TPyMultiGradFunction(PyObject* self = 0) | |
virtual | ~TPyMultiGradFunction() |
static TClass* | Class() |
virtual ROOT::Math::IBaseFunctionMultiDim* | Clone() const |
double | ROOT::Math::IGradientMultiDim::Derivative(const double* x, unsigned int icoord = 0) const |
virtual double | DoDerivative(const double* x, unsigned int icoord) const |
virtual double | DoEval(const double* x) const |
virtual void | FdF(const double* x, double& f, double* df) const |
virtual void | Gradient(const double* x, double* grad) const |
virtual TClass* | IsA() const |
virtual unsigned int | NDim() const |
double | ROOT::Math::IBaseFunctionMultiDim::operator()(const double* x) const |
virtual void | ShowMembers(TMemberInspector&) |
virtual void | Streamer(TBuffer&) |
void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
TPyMultiGradFunction(const TPyMultiGradFunction& src) | |
TPyMultiGradFunction& | operator=(const TPyMultiGradFunction&) |
PyObject* | fPySelf | ! actual python object |
Construct a TPyMultiGradFunction derived with <self> as the underlying
Simply forward the call to python self.
Math::IMultiGenFunction implementation
{ return new TPyMultiGenFunction( fPySelf ); }