ROOT logo
ROOT » MATH » MATHCORE » ROOT::Math

namespace ROOT::Math

Function Members (Methods)

public:
doubleairy_Ai(double x)
doubleairy_Ai_deriv(double x)
doubleairy_Bi(double x)
doubleairy_Bi_deriv(double x)
doubleairy_zero_Ai(unsigned int s)
doubleairy_zero_Ai_deriv(unsigned int s)
doubleairy_zero_Bi(unsigned int s)
doubleairy_zero_Bi_deriv(unsigned int s)
doubleassoc_laguerre(unsigned int, double m, double x)
doubleassoc_legendre(unsigned int, unsigned int, double x)
doublebeta(double x, double y)
doublebeta_cdf(double x, double a, double b)
doublebeta_cdf_c(double x, double a, double b)
doublebeta_pdf(double x, double a, double b)
doublebeta_quantile(double x, double a, double b)
doublebeta_quantile_c(double x, double a, double b)
doublebinomial_cdf(unsigned int k, double p, unsigned int n)
doublebinomial_cdf_c(unsigned int k, double p, unsigned int n)
doublebinomial_pdf(unsigned int k, double p, unsigned int n)
doublebreitwigner_cdf(double x, double gamma, double x0 = 0)
doublebreitwigner_cdf_c(double x, double gamma, double x0 = 0)
doublebreitwigner_pdf(double x, double gamma, double x0 = 0)
doublebreitwigner_quantile(double z, double gamma)
doublebreitwigner_quantile_c(double z, double gamma)
doublecauchy_cdf(double x, double b, double x0 = 0)
doublecauchy_cdf_c(double x, double b, double x0 = 0)
doublecauchy_pdf(double x, double b = 1, double x0 = 0)
doublecauchy_quantile(double z, double b)
doublecauchy_quantile_c(double z, double b)
doubleChebyshev0(double, double c0)
doubleChebyshev1(double x, double c0, double c1)
doubleChebyshev2(double x, double c0, double c1, double c2)
doubleChebyshev3(double x, double c0, double c1, double c2, double c3)
doubleChebyshev4(double x, double c0, double c1, double c2, double c3, double c4)
doubleChebyshev5(double x, double c0, double c1, double c2, double c3, double c4, double c5)
doubleChebyshevN(unsigned int n, double x, const double* c)
doublechisquared_cdf(double x, double r, double x0 = 0)
doublechisquared_cdf_c(double x, double r, double x0 = 0)
doublechisquared_pdf(double x, double r, double x0 = 0)
doublechisquared_quantile(double z, double r)
doublechisquared_quantile_c(double z, double r)
doublecomp_ellint_1(double k)
doublecomp_ellint_2(double k)
doublecomp_ellint_3(double n, double k)
doubleconf_hyperg(double a, double b, double z)
doubleconf_hypergU(double a, double b, double z)
doublecosint(double x)
doublecyl_bessel_i(double nu, double x)
doublecyl_bessel_j(double nu, double x)
doublecyl_bessel_k(double nu, double x)
doublecyl_neumann(double nu, double x)
doubleellint_1(double k, double phi)
doubleellint_2(double k, double phi)
doubleellint_3(double n, double k, double phi)
doubleerf(double x)
doubleerfc(double x)
long doubleetaMax_impl()
doubleexpint(double x)
doubleexpm1(double x)
doubleexponential_cdf(double x, double lambda, double x0 = 0)
doubleexponential_cdf_c(double x, double lambda, double x0 = 0)
doubleexponential_pdf(double x, double lambda, double x0 = 0)
doubleexponential_quantile(double z, double lambda)
doubleexponential_quantile_c(double z, double lambda)
doublefdistribution_cdf(double x, double n, double m, double x0 = 0)
doublefdistribution_cdf_c(double x, double n, double m, double x0 = 0)
doublefdistribution_pdf(double x, double n, double m, double x0 = 0)
doublefdistribution_quantile(double z, double n, double m)
doublefdistribution_quantile_c(double z, double n, double m)
doublegamma_cdf(double x, double alpha, double theta, double x0 = 0)
doublegamma_cdf_c(double x, double alpha, double theta, double x0 = 0)
doublegamma_pdf(double x, double alpha, double theta, double x0 = 0)
doublegamma_quantile(double z, double alpha, double theta)
doublegamma_quantile_c(double z, double alpha, double theta)
doublegaussian_cdf(double x, double sigma = 1, double x0 = 0)
doublegaussian_cdf_c(double x, double sigma = 1, double x0 = 0)
doublegaussian_pdf(double x, double sigma = 1, double x0 = 0)
doublegaussian_quantile(double z, double sigma)
doublegaussian_quantile_c(double z, double sigma)
doublehyperg(double a, double b, double c, double x)
doubleinc_beta(double x, double a, double b)
doubleinc_gamma(double a, double x)
doubleinc_gamma_c(double a, double x)
doublelaguerre(unsigned int, double x)
doublelandau_cdf(double x, double xi = 1, double x0 = 0)
doublelandau_cdf_c(double x, double xi = 1, double x0 = 0)
doublelandau_pdf(double x, double xi = 1, double x0 = 0)
doublelandau_quantile(double z, double xi = 1)
doublelandau_quantile_c(double z, double xi = 1)
doublelandau_xm1(double x, double xi = 1, double x0 = 0)
doublelandau_xm2(double x, double xi = 1, double x0 = 0)
doublelegendre(unsigned int, double x)
doublelgamma(double x)
doublelog1p(double x)
doublelognormal_cdf(double x, double m, double s, double x0 = 0)
doublelognormal_cdf_c(double x, double m, double s, double x0 = 0)
doublelognormal_pdf(double x, double m, double s, double x0 = 0)
doublelognormal_quantile(double x, double m, double s)
doublelognormal_quantile_c(double x, double m, double s)
doublenegative_binomial_cdf(unsigned int k, double p, double n)
doublenegative_binomial_cdf_c(unsigned int k, double p, double n)
doublenegative_binomial_pdf(unsigned int k, double p, double n)
doublenoncentral_chisquared_pdf(double x, double r, double lambda)
doublenormal_cdf(double x, double sigma = 1, double x0 = 0)
doublenormal_cdf_c(double x, double sigma = 1, double x0 = 0)
doublenormal_pdf(double x, double sigma = 1, double x0 = 0)
doublenormal_quantile(double z, double sigma)
doublenormal_quantile_c(double z, double sigma)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationX const& r1, ROOT::Math::Rotation3D const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationY const& r1, ROOT::Math::Rotation3D const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::Rotation3D const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationX const& r1, ROOT::Math::RotationY const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationX const& r1, ROOT::Math::RotationZ const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationY const& r1, ROOT::Math::RotationX const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationY const& r1, ROOT::Math::RotationZ const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::RotationX const& r2)
ROOT::Math::Rotation3Doperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::RotationY const& r2)
ROOT::Math::RotationZYXoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::RotationZYX const& r2)
ROOT::Math::RotationZYXoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::RotationZYX const& r2)
ROOT::Math::RotationZYXoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::RotationZYX const& r2)
ROOT::Math::EulerAnglesoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::EulerAngles const& r2)
ROOT::Math::EulerAnglesoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::EulerAngles const& r2)
ROOT::Math::EulerAnglesoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::EulerAngles const& r2)
ROOT::Math::AxisAngleoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::AxisAngle const& r2)
ROOT::Math::AxisAngleoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::AxisAngle const& r2)
ROOT::Math::AxisAngleoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::AxisAngle const& r2)
ROOT::Math::Quaternionoperator*(ROOT::Math::RotationX const& r1, ROOT::Math::Quaternion const& r2)
ROOT::Math::Quaternionoperator*(ROOT::Math::RotationY const& r1, ROOT::Math::Quaternion const& r2)
ROOT::Math::Quaternionoperator*(ROOT::Math::RotationZ const& r1, ROOT::Math::Quaternion const& r2)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Rotation3D& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationX& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationY& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZ& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZYX& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::AxisAngle& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::EulerAngles& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Quaternion& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::Rotation3D& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationY& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationZ& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::RotationZYX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::EulerAngles& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::Quaternion& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& t, const ROOT::Math::AxisAngle& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::Translation3D& d)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Translation3D& d, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::Rotation3D& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationY& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationZ& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::RotationZYX& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::EulerAngles& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::AxisAngle& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t, const ROOT::Math::Quaternion& r)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Rotation3D& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationX& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationY& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZ& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::RotationZYX& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::EulerAngles& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::AxisAngle& r, const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3Doperator*(const ROOT::Math::Quaternion& r, const ROOT::Math::Transform3D& t)
ROOT::Math::XYZVectoroperator*(double a, ROOT::Math::XYZVector v)
ROOT::Math::XYZPointoperator*(double a, ROOT::Math::XYZPoint p)
ROOT::Math::XYZTVectoroperator*(double a, ROOT::Math::XYZTVector v)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v1, ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v1, ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator+(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v1, ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::DisplacementVector3D<ROOT::Math::Cylindrical3D<double>,ROOT::Math::DefaultCoordinateSystemTag> v1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v1, const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v1, const ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v1, const ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Polar3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator-(ROOT::Math::PositionVector3D<ROOT::Math::CylindricalEta3D<double>,ROOT::Math::DefaultCoordinateSystemTag> p1, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag> const& v2)
ostream&operator<<(ostream& os, const ROOT::Math::Rotation3D& r)
ostream&operator<<(ostream& os, const ROOT::Math::RotationZYX& e)
ostream&operator<<(ostream& os, const ROOT::Math::RotationX& r)
ostream&operator<<(ostream& os, const ROOT::Math::RotationY& r)
ostream&operator<<(ostream& os, const ROOT::Math::RotationZ& r)
ostream&operator<<(ostream& os, const ROOT::Math::BoostX& b)
ostream&operator<<(ostream& os, const ROOT::Math::BoostY& b)
ostream&operator<<(ostream& os, const ROOT::Math::BoostZ& b)
ostream&operator<<(ostream& os, const ROOT::Math::Boost& b)
ostream&operator<<(ostream& os, const ROOT::Math::LorentzRotation& r)
ostream&operator<<(ostream& os, const ROOT::Math::EulerAngles& e)
ostream&operator<<(ostream& os, const ROOT::Math::AxisAngle& a)
ostream&operator<<(ostream& os, const ROOT::Math::Quaternion& q)
ostream&operator<<(ostream& os, const ROOT::Math::Translation3D& t)
ostream&operator<<(ostream& os, const ROOT::Math::Transform3D& t)
ostream&operator<<(ostream& os, const ROOT::Math::Plane3D& p)
doublePi()
doublepoisson_cdf(unsigned int n, double mu)
doublepoisson_cdf_c(unsigned int n, double mu)
doublepoisson_pdf(unsigned int n, double mu)
doubleriemann_zeta(double x)
doublesinint(double x)
doublesph_bessel(unsigned int, double x)
doublesph_legendre(unsigned int, unsigned int, double theta)
doublesph_neumann(unsigned int, double x)
doubletdistribution_cdf(double x, double r, double x0 = 0)
doubletdistribution_cdf_c(double x, double r, double x0 = 0)
doubletdistribution_pdf(double x, double r, double x0 = 0)
doubletdistribution_quantile(double z, double r)
doubletdistribution_quantile_c(double z, double r)
doubletgamma(double x)
voidThrow(ROOT::Math::GenVector_exception& e)
doubleuniform_cdf(double x, double a, double b, double x0 = 0)
doubleuniform_cdf_c(double x, double a, double b, double x0 = 0)
doubleuniform_pdf(double x, double a, double b, double x0 = 0)
doubleuniform_quantile(double z, double a, double b)
doubleuniform_quantile_c(double z, double a, double b)
doublevavilov_accurate_cdf(double x, double kappa, double beta2)
doublevavilov_accurate_cdf_c(double x, double kappa, double beta2)
doublevavilov_accurate_pdf(double x, double kappa, double beta2)
doublevavilov_accurate_quantile(double z, double kappa, double beta2)
doublevavilov_accurate_quantile_c(double z, double kappa, double beta2)
doublevavilov_fast_cdf(double x, double kappa, double beta2)
doublevavilov_fast_cdf_c(double x, double kappa, double beta2)
doublevavilov_fast_pdf(double x, double kappa, double beta2)
doublevavilov_fast_quantile(double z, double kappa, double beta2)
doublevavilov_fast_quantile_c(double z, double kappa, double beta2)
doublewigner_3j(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc)
doublewigner_6j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf)
doublewigner_9j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji)

Data Members

Class Charts

Function documentation

double beta_quantile(double x, double a, double b)
 @defgroup QuantFunc Quantile Functions
   *  @ingroup StatFunc
   *
   *  Inverse functions of the cumulative distribution functions
   *  and the inverse of the complement of the cumulative distribution functions
   *  for various distributions.
   *  The functions with the extension <em>_quantile</em> calculate the
   *  inverse of the <em>_cdf</em> function, the
   *  lower tail integral of the probability density function
   *  \f$D^{-1}(z)\f$ where
   *
   *  \f[ D(x) = \int_{-\infty}^{x} p(x') dx' \f]
   *
   *  while those with the <em>_quantile_c</em> extension calculate the
   *  inverse of the <em>_cdf_c</em> functions, the upper tail integral of the probability
   *  density function \f$D^{-1}(z) \f$ where
   *
   *  \f[ D(x) = \int_{x}^{+\infty} p(x') dx' \f]
   *
   *  These functions are defined in the header file <em>Math/ProbFunc.h<em> or in the global one
   *  including all statistical dunctions <em>Math/DistFunc.h<em>
   *
   *
   * <strong>NOTE:</strong> In the old releases (< 5.14) the <em>_quantile</em> functions were called
   * <em>_quant_inv</em> and the <em>_quantile_c</em> functions were called
   * <em>_prob_inv</em>.
   * These names are currently kept for backward compatibility, but
   * their usage is deprecated.
   *

 @name Quantile Functions from MathCore
   * The implementation is provided in MathCore and for the majority of the function comes from
   * <A HREF="http://www.netlib.org/cephes">Cephes</A>.


@{


     Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
     function of the upper tail of the beta distribution
     (#beta_cdf_c).
     It is implemented using the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.


     @ingroup QuantFunc


double beta_quantile_c(double x, double a, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the beta distribution
      (#beta_cdf).
      It is implemented using
      the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double cauchy_quantile_c(double z, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the Cauchy distribution (#cauchy_cdf_c)
      which is also called Lorentzian distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double cauchy_quantile(double z, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the Cauchy distribution (#cauchy_cdf)
      which is also called Breit-Wigner or Lorentzian distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC294">GSL</A>.

      @ingroup QuantFunc


double breitwigner_quantile_c(double z, double gamma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the Breit-Wigner distribution (#breitwigner_cdf_c)
      which is similar to the Cauchy distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. It is evaluated using the same implementation of
      #cauchy_quantile_c.

      @ingroup QuantFunc


double breitwigner_quantile(double z, double gamma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the Breit_Wigner distribution (#breitwigner_cdf)
      which is similar to the Cauchy distribution. For
      detailed description see
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. It is evaluated using the same implementation of
      #cauchy_quantile.


      @ingroup QuantFunc


double chisquared_quantile_c(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the \f$\chi^2\f$ distribution
      with \f$r\f$ degrees of freedom (#chisquared_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
      Mathworld</A>. It is implemented using the inverse of the incomplete complement gamma function, using
      the function igami from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double chisquared_quantile(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the \f$\chi^2\f$ distribution
      with \f$r\f$ degrees of freedom (#chisquared_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
      Mathworld</A>.
      It is implemented using  chisquared_quantile_c, therefore is not very precise for small z.
      It is reccomended to use the MathMore function (ROOT::MathMore::chisquared_quantile )implemented using GSL

      @ingroup QuantFunc


double exponential_quantile_c(double z, double lambda)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the exponential distribution
      (#exponential_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double exponential_quantile(double z, double lambda)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the exponential distribution
      (#exponential_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double fdistribution_quantile(double z, double n, double m)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the f distribution
      (#fdistribution_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/F-Distribution.html">
      Mathworld</A>.
      It is implemented using the inverse of the incomplete beta function,
      function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double fdistribution_quantile_c(double z, double n, double m)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the f distribution
      (#fdistribution_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/F-Distribution.html">
      Mathworld</A>.
      It is implemented using the inverse of the incomplete beta function,
      function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc

double gamma_quantile_c(double z, double alpha, double theta)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the gamma distribution
      (#gamma_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/GammaDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC300">GSL</A>.
      It is implemented using the function igami taken
      from <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double gamma_quantile(double z, double alpha, double theta)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the gamma distribution
      (#gamma_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/GammaDistribution.html">
      Mathworld</A>.
      It is implemented using  chisquared_quantile_c, therefore is not very precise for small z.
      For this special cases it is reccomended to use the MathMore function ROOT::MathMore::gamma_quantile
      implemented using GSL


      @ingroup QuantFunc


double gaussian_quantile_c(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the normal (Gaussian) distribution
      (#gaussian_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #normal_quantile_c which will
      call the same implementation.

      @ingroup QuantFunc


double gaussian_quantile(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the normal (Gaussian) distribution
      (#gaussian_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #normal_quantile which will
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from
      <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double lognormal_quantile_c(double x, double m, double s)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the lognormal distribution
      (#lognormal_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>.

      @ingroup QuantFunc


double lognormal_quantile(double x, double m, double s)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the lognormal distribution
      (#lognormal_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>.

      @ingroup QuantFunc


double normal_quantile_c(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the normal (Gaussian) distribution
      (#normal_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #gaussian_quantile_c which will
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from
      <A HREF="http://www.netlib.org/cephes">Cephes</A>.

      @ingroup QuantFunc


double normal_quantile(double z, double sigma)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the normal (Gaussian) distribution
      (#normal_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #gaussian_quantile which will
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from
      <A HREF="http://www.netlib.org/cephes">Cephes</A>.


      @ingroup QuantFunc


double tdistribution_quantile_c(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of Student's t-distribution
      (#tdistribution_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>.

      @ingroup QuantFunc


double tdistribution_quantile(double z, double r)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of Student's t-distribution
      (#tdistribution_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html">
      Mathworld</A>. The implementation used is that of
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>.

      @ingroup QuantFunc


double uniform_quantile_c(double z, double a, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the uniform (flat) distribution
      (#uniform_cdf_c). For detailed description see
      <A HREF="http://mathworld.wolfram.com/UniformDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double uniform_quantile(double z, double a, double b)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the uniform (flat) distribution
      (#uniform_cdf). For detailed description see
      <A HREF="http://mathworld.wolfram.com/UniformDistribution.html">
      Mathworld</A>.

      @ingroup QuantFunc


double landau_quantile(double z, double xi = 1)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the lower tail of the Landau distribution
      (#landau_cdf).

   For detailed description see
   K.S. K&ouml;lbig and B. Schorr, A program package for the Landau distribution,
   <A HREF="http://dx.doi.org/10.1016/0010-4655(84)90085-7">Computer Phys. Comm. 31 (1984) 97-111</A>
   <A HREF="http://dx.doi.org/10.1016/j.cpc.2008.03.002">[Erratum-ibid. 178 (2008) 972]</A>.
   The same algorithms as in
   <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g110/top.html">
   CERNLIB</A> (RANLAN) is used.

   @param z The argument \f$z\f$
   @param xi The width parameter \f$\xi\f$

      @ingroup QuantFunc


double landau_quantile_c(double z, double xi = 1)

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution
      function of the upper tail of the landau distribution
      (#landau_cdf_c).
      Implemented using #landau_quantile

   @param z The argument \f$z\f$
   @param xi The width parameter \f$\xi\f$

      @ingroup QuantFunc