void | CalcGaussLegendreSamplingPoints() |
virtual double | DoIntegral(double a, double b, const ROOT::Math::IGenFunction* func) |
double | ROOT::Math::GaussIntegrator::fEpsAbs | Absolute error. |
double | ROOT::Math::GaussIntegrator::fEpsRel | Relative error. |
const ROOT::Math::IGenFunction* | ROOT::Math::GaussIntegrator::fFunction | Pointer to function used. |
double | ROOT::Math::GaussIntegrator::fLastError | Error from the last stimation. |
double | ROOT::Math::GaussIntegrator::fLastResult | Result from the last stimation. |
int | fNum | Number of points used in the stimation of the integral. |
bool | ROOT::Math::GaussIntegrator::fUsedOnce | Bool value to check if the function was at least called once. |
double* | fW | Weights of the points used. |
double* | fX | Abscisa of the points used. |
static bool | ROOT::Math::GaussIntegrator::fgAbsValue | AbsValue used for the calculation of the integral |
Basic contructor of GaussLegendreIntegrator. \@param num Number of desired points to calculate the integration. \@param eps Desired relative error.
Returns the arrays x and w containing the abscissa and weight of the Gauss-Legendre n-point quadrature formula. Gauss-Legendre: W(x)=1 -1<x<1 (j+1)P_{j+1} = (2j+1)xP_j-jP_{j-1}
return number of function evaluations in calculating the integral This is equivalent to the number of points
{ return fNum; }
Integration surrugate method. Return integral of passed function in interval [a,b] Reimplement method of GaussIntegrator using CalcGaussLegendreSamplingPoints
Type: unsafe but fast interface filling the arrays x and w (static method) Given the number of sampling points this routine fills the arrays x and w of length num, containing the abscissa and weight of the Gauss-Legendre n-point quadrature formula. Gauss-Legendre: W(x)=1 -1<x<1 (j+1)P_{j+1} = (2j+1)xP_j-jP_{j-1} num is the number of sampling points (>0) x and w are arrays of size num eps is the relative precision If num<=0 or eps<=0 no action is done. Reference: Numerical Recipes in C, Second Edition