Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
tree2.C File Reference

Detailed Description

View in nbviewer Open in SWAN
This example illustrates how to make a Tree from variables or arrays in a C struct - without a dictionary, by creating the branches for builtin types (int, float, double) and arrays explicitly.

See tree2a.C for the same example using a class with dictionary instead of a C-struct.

In this example, we are mapping a C struct to one of the Geant3 common blocks /gctrak/. In the real life, this common will be filled by Geant3 at each step and only the Tree Fill function should be called. The example emulates the Geant3 step routines.

to run the example, do:

#include "TFile.h"
#include "TTree.h"
#include "TH2.h"
#include "TRandom.h"
#include "TCanvas.h"
#include "TMath.h"
const Int_t MAXMEC = 30;
typedef struct {
Int_t pid;
Float_t step;
{
// extrapolate track in constant field
Float_t field = 20; //magnetic field in kilogauss
enum Evect {kX,kY,kZ,kPX,kPY,kPZ,kPP};
Float_t h4 = field*2.99792e-4;
Float_t rho = -h4/vect[kPP];
Float_t tet = rho*step;
Float_t f1 = step*sintt;
Float_t f2 = step*cos1t;
Float_t f3 = step*tsint*vect[kPZ];
Float_t f4 = -tet*cos1t;
Float_t f5 = sint;
vout[kX] = vect[kX] + (f1*vect[kPX] - f2*vect[kPY]);
vout[kY] = vect[kY] + (f1*vect[kPY] + f2*vect[kPX]);
vout[kZ] = vect[kZ] + (f1*vect[kPZ] + f3);
vout[kPX] = vect[kPX] + (f4*vect[kPX] - f5*vect[kPY]);
vout[kPY] = vect[kPY] + (f4*vect[kPY] + f5*vect[kPX]);
vout[kPZ] = vect[kPZ] + (f4*vect[kPZ] + f6);
}
void tree2w()
{
//create a Tree file tree2.root
//create the file, the Tree and a few branches with
//a subset of gctrak
TFile f("tree2.root","recreate");
TTree t2("t2","a Tree with data from a fake Geant3");
t2.Branch("vect",gstep.vect,"vect[7]/F");
t2.Branch("getot",&gstep.getot);
t2.Branch("gekin",&gstep.gekin);
t2.Branch("nmec",&gstep.nmec);
t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");
t2.Branch("destep",&gstep.destep);
t2.Branch("pid",&gstep.pid);
//Initialize particle parameters at first point
Float_t px,py,pz,p,charge=0;
Float_t mass = 0.137;
gstep.step = 0.1;
gstep.destep = 0;
gstep.nmec = 0;
gstep.pid = 0;
//transport particles
for (Int_t i=0;i<10000;i++) {
//generate a new particle if necessary
if (newParticle) {
px = gRandom->Gaus(0,.02);
py = gRandom->Gaus(0,.02);
pz = gRandom->Gaus(0,.02);
p = TMath::Sqrt(px*px+py*py+pz*pz);
charge = 1; if (gRandom->Rndm() < 0.5) charge = -1;
gstep.pid += 1;
gstep.vect[0] = 0;
gstep.vect[1] = 0;
gstep.vect[2] = 0;
gstep.vect[3] = px/p;
gstep.vect[4] = py/p;
gstep.vect[5] = pz/p;
gstep.vect[6] = p*charge;
gstep.getot = TMath::Sqrt(p*p + mass*mass);
gstep.gekin = gstep.getot - mass;
}
// fill the Tree with current step parameters
t2.Fill();
//transport particle in magnetic field
helixStep(gstep.step, gstep.vect, vout); //make one step
//apply energy loss
gstep.destep = gstep.step*gRandom->Gaus(0.0002,0.00001);
gstep.gekin -= gstep.destep;
gstep.getot = gstep.gekin + mass;
gstep.vect[6] = charge*TMath::Sqrt(gstep.getot*gstep.getot - mass*mass);
gstep.vect[0] = vout[0];
gstep.vect[1] = vout[1];
gstep.vect[2] = vout[2];
gstep.vect[3] = vout[3];
gstep.vect[4] = vout[4];
gstep.vect[5] = vout[5];
gstep.nmec = (Int_t)(5*gRandom->Rndm());
for (Int_t l=0;l<gstep.nmec;l++) gstep.lmec[l] = l;
if (gstep.gekin < 0.001) newParticle = kTRUE;
if (TMath::Abs(gstep.vect[2]) > 30) newParticle = kTRUE;
}
//save the Tree header. The file will be automatically closed
//when going out of the function scope
t2.Write();
}
void tree2r()
{
//read the Tree generated by tree2w and fill one histogram
//we are only interested by the destep branch.
//note that we use "new" to create the TFile and TTree objects !
//because we want to keep these objects alive when we leave
//this function.
TFile *f = new TFile("tree2.root");
TTree *t2 = (TTree*)f->Get("t2");
static Float_t destep;
TBranch *b_destep = t2->GetBranch("destep");
b_destep->SetAddress(&destep);
//create one histogram
TH1F *hdestep = new TH1F("hdestep","destep in Mev",100,1e-5,3e-5);
//read only the destep branch for all entries
Long64_t nentries = t2->GetEntries();
for (Long64_t i=0;i<nentries;i++) {
b_destep->GetEntry(i);
hdestep->Fill(destep);
}
//we do not close the file.
//We want to keep the generated histograms
//We fill a 3-d scatter plot with the particle step coordinates
TCanvas *c1 = new TCanvas("c1","c1",600,800);
c1->SetFillColor(42);
c1->Divide(1,2);
c1->cd(1);
hdestep->SetFillColor(45);
hdestep->Fit("gaus");
c1->cd(2);
gPad->SetFillColor(37);
t2->SetMarkerColor(kRed);
t2->Draw("vect[0]:vect[1]:vect[2]");
// Allow to use the TTree after the end of the function.
t2->ResetBranchAddresses();
}
void tree2() {
tree2w();
tree2r();
}
#define f(i)
Definition RSha256.hxx:104
#define e(i)
Definition RSha256.hxx:103
bool Bool_t
Definition RtypesCore.h:63
int Int_t
Definition RtypesCore.h:45
float Float_t
Definition RtypesCore.h:57
constexpr Bool_t kFALSE
Definition RtypesCore.h:101
long long Long64_t
Definition RtypesCore.h:80
constexpr Bool_t kTRUE
Definition RtypesCore.h:100
@ kRed
Definition Rtypes.h:66
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter p
int nentries
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
#define gPad
A TTree is a list of TBranches.
Definition TBranch.h:93
The Canvas class.
Definition TCanvas.h:23
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
Definition TFile.h:53
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:621
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition TRandom.cxx:275
Double_t Rndm() override
Machine independent random number generator.
Definition TRandom.cxx:559
A TTree represents a columnar dataset.
Definition TTree.h:79
return c1
Definition legend1.C:41
TF1 * f1
Definition legend1.C:11
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:662
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123
TLine l
Definition textangle.C:4
Author
Rene Brun

Definition in file tree2.C.