Settings for classificationused to distinguish between different function signatures.
contains additional settings if the DNN problem is classification
Definition at line 894 of file NeuralNet.h.
Public Member Functions | |
| ClassificationSettings (TString name, size_t _convergenceSteps=15, size_t _batchSize=10, size_t _testRepetitions=7, double _factorWeightDecay=1e-5, EnumRegularization _regularization=EnumRegularization::NONE, size_t _scaleToNumEvents=0, MinimizerType _eMinimizerType=MinimizerType::fSteepest, double _learningRate=1e-5, double _momentum=0.3, int _repetitions=3, bool _useMultithreading=true) | |
| c'tor   | |
| virtual | ~ClassificationSettings () | 
| d'tor   | |
| virtual void | endTestCycle () | 
| action to be done when the training cycle is ended (e.g.   | |
| void | endTrainCycle (double) | 
| action to be done when the training cycle is ended (e.g.   | |
| void | setResultComputation (std::string _fileNameNetConfig, std::string _fileNameResult, std::vector< Pattern > *_resultPatternContainer) | 
| preparation for monitoring output   | |
| void | setWeightSums (double sumOfSigWeights, double sumOfBkgWeights) | 
| set the weight sums to be scaled to (preparations for monitoring output)   | |
| virtual void | startTestCycle () | 
| action to be done when the test cycle is started (e.g.   | |
| void | startTrainCycle () | 
| action to be done when the training cycle is started (e.g.   | |
| void | testIteration () | 
| callback for monitoring and loggging   | |
| void | testSample (double error, double output, double target, double weight) | 
| action to be done after the computation of a test sample (e.g.   | |
  Public Member Functions inherited from TMVA::DNN::Settings | |
| Settings (TString name, size_t _convergenceSteps=15, size_t _batchSize=10, size_t _testRepetitions=7, double _factorWeightDecay=1e-5, TMVA::DNN::EnumRegularization _regularization=TMVA::DNN::EnumRegularization::NONE, MinimizerType _eMinimizerType=MinimizerType::fSteepest, double _learningRate=1e-5, double _momentum=0.3, int _repetitions=3, bool _multithreading=true) | |
| c'tor   | |
| virtual | ~Settings () | 
| d'tor   | |
| void | addPoint (std::string histoName, double x) | 
| for monitoring   | |
| void | addPoint (std::string histoName, double x, double y) | 
| for monitoring   | |
| size_t | batchSize () const | 
| mini-batch size   | |
| void | clear (std::string histoName) | 
| for monitoring   | |
| virtual void | computeResult (const Net &, std::vector< double > &) | 
| callback for monitoring and logging   | |
| size_t | convergenceCount () const | 
| returns the current convergence count   | |
| size_t | convergenceSteps () const | 
| how many steps until training is deemed to have converged   | |
| void | create (std::string histoName, int bins, double min, double max) | 
| for monitoring   | |
| void | create (std::string histoName, int bins, double min, double max, int bins2, double min2, double max2) | 
| for monitoring   | |
| virtual void | cycle (double progress, TString text) | 
| virtual void | drawSample (const std::vector< double > &, const std::vector< double > &, const std::vector< double > &, double) | 
| callback for monitoring and logging   | |
| const std::vector< double > & | dropFractions () const | 
| size_t | dropRepetitions () const | 
| bool | exists (std::string histoName) | 
| for monitoring   | |
| double | factorWeightDecay () const | 
| get the weight-decay factor   | |
| virtual bool | hasConverged (double testError) | 
| has this training converged already?   | |
| double | learningRate () const | 
| get the learning rate   | |
| size_t | maxConvergenceCount () const | 
| returns the max convergence count so far   | |
| size_t | minError () const | 
| returns the smallest error so far   | |
| MinimizerType | minimizerType () const | 
| which minimizer shall be used (e.g. SGD)   | |
| double | momentum () const | 
| get the momentum (e.g. for SGD)   | |
| void | pads (int numPads) | 
| preparation for monitoring   | |
| void | plot (std::string histoName, std::string options, int pad, EColor color) | 
| for monitoring   | |
| EnumRegularization | regularization () const | 
| some regularization of the DNN is turned on?   | |
| int | repetitions () const | 
| how many steps have to be gone until the batch is changed   | |
| template<typename Iterator > | |
| void | setDropOut (Iterator begin, Iterator end, size_t _dropRepetitions) | 
| set the drop-out configuration (layer-wise)   | |
| void | setMonitoring (std::shared_ptr< Monitoring > ptrMonitoring) | 
| prepared for monitoring   | |
| virtual void | setProgressLimits (double minProgress=0, double maxProgress=100) | 
| virtual void | startTraining () | 
| size_t | testRepetitions () const | 
| how often is the test data tested   | |
| bool | useMultithreading () const | 
| is multithreading turned on?   | |
Additional Inherited Members | |
  Protected Attributes inherited from TMVA::DNN::Settings | |
| std::shared_ptr< Monitoring > | fMonitoring | 
| bool | m_useMultithreading | 
#include <TMVA/NeuralNet.h>
      
  | 
  inline | 
c'tor
Definition at line 901 of file NeuralNet.h.
      
  | 
  inlinevirtual | 
d'tor
Definition at line 924 of file NeuralNet.h.
      
  | 
  virtual | 
action to be done when the training cycle is ended (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 326 of file NeuralNet.cxx.
      
  | 
  virtual | 
action to be done when the training cycle is ended (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 296 of file NeuralNet.cxx.
| void TMVA::DNN::ClassificationSettings::setResultComputation | ( | std::string | _fileNameNetConfig, | 
| std::string | _fileNameResult, | ||
| std::vector< Pattern > * | _resultPatternContainer ) | 
preparation for monitoring output
Definition at line 520 of file NeuralNet.cxx.
| void TMVA::DNN::ClassificationSettings::setWeightSums | ( | double | sumOfSigWeights, | 
| double | sumOfBkgWeights ) | 
set the weight sums to be scaled to (preparations for monitoring output)
Definition at line 512 of file NeuralNet.cxx.
      
  | 
  virtual | 
action to be done when the test cycle is started (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 316 of file NeuralNet.cxx.
      
  | 
  virtual | 
action to be done when the training cycle is started (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 281 of file NeuralNet.cxx.
      
  | 
  inlinevirtual | 
callback for monitoring and loggging
Reimplemented from TMVA::DNN::Settings.
Definition at line 930 of file NeuralNet.h.
      
  | 
  virtual | 
action to be done after the computation of a test sample (e.g.
update some monitoring output)
Reimplemented from TMVA::DNN::Settings.
Definition at line 304 of file NeuralNet.cxx.
| std::vector<double> TMVA::DNN::ClassificationSettings::m_ams | 
Definition at line 1000 of file NeuralNet.h.
| double TMVA::DNN::ClassificationSettings::m_cutValue | 
Definition at line 1008 of file NeuralNet.h.
| std::string TMVA::DNN::ClassificationSettings::m_fileNameNetConfig | 
Definition at line 1011 of file NeuralNet.h.
| std::string TMVA::DNN::ClassificationSettings::m_fileNameResult | 
Definition at line 1010 of file NeuralNet.h.
| std::vector<double> TMVA::DNN::ClassificationSettings::m_input | 
Definition at line 995 of file NeuralNet.h.
| std::vector<double> TMVA::DNN::ClassificationSettings::m_output | 
Definition at line 996 of file NeuralNet.h.
| std::vector<Pattern>* TMVA::DNN::ClassificationSettings::m_pResultPatternContainer | 
Definition at line 1009 of file NeuralNet.h.
| size_t TMVA::DNN::ClassificationSettings::m_scaleToNumEvents | 
Definition at line 1006 of file NeuralNet.h.
| std::vector<double> TMVA::DNN::ClassificationSettings::m_significances | 
Definition at line 1001 of file NeuralNet.h.
| double TMVA::DNN::ClassificationSettings::m_sumOfBkgWeights | 
Definition at line 1005 of file NeuralNet.h.
| double TMVA::DNN::ClassificationSettings::m_sumOfSigWeights | 
Definition at line 1004 of file NeuralNet.h.
| std::vector<double> TMVA::DNN::ClassificationSettings::m_targets | 
Definition at line 997 of file NeuralNet.h.
| std::vector<double> TMVA::DNN::ClassificationSettings::m_weights | 
Definition at line 998 of file NeuralNet.h.