12        std::shared_ptr<std::function<
double(
double)>> 
Gauss = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
const double s = 6.0; 
return exp (-std::pow(
value*s,2.0)); });
 
   13        std::shared_ptr<std::function<
double(
double)>> 
GaussComplement = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
const double s = 6.0; 
return 1.0 - exp (-std::pow(
value*s,2.0)); });
 
   16        std::shared_ptr<std::function<
double(
double)>> 
InvLinear = std::make_shared<std::function<
double(
double)>> ([](
double ){ 
return 1.0; });
 
   17        std::shared_ptr<std::function<
double(
double)>> 
InvReLU = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
const double margin = 0.0; 
return value > margin ? 1.0 : 0; });
 
   20        std::shared_ptr<std::function<
double(
double)>> 
InvSoftSign = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
return std::pow ((1.0 - fabs (
value)),2.0); });
 
   21        std::shared_ptr<std::function<
double(
double)>> 
InvSymmReLU = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
const double margin = 0.3; 
return value > margin ? 1.0 : 
value < -margin ? 1.0 : 0; });
 
   22        std::shared_ptr<std::function<
double(
double)>> 
InvTanh = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
return 1.0 - std::pow (
value, 2.0); });
 
   25        std::shared_ptr<std::function<
double(
double)>> 
ReLU = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
const double margin = 0.0; 
return value > margin ? 
value-margin : 0; });
 
   26        std::shared_ptr<std::function<
double(
double)>> 
Sigmoid = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
value = std::max (-100.0, std::min (100.0,
value)); 
return 1.0/(1.0 + std::exp (-
value)); });
 
   27        std::shared_ptr<std::function<
double(
double)>> 
SoftPlus = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
return std::log (1.0+ std::exp (
value)); });
 
   28        std::shared_ptr<std::function<
double(
double)>> 
ZeroFnc = std::make_shared<std::function<
double(
double)>> ([](
double ){ 
return 0; });
 
   29        std::shared_ptr<std::function<
double(
double)>> 
Tanh = std::make_shared<std::function<
double(
double)>> ([](
double value){ 
return tanh (
value); });
 
   37            static std::default_random_engine 
generator;
 
 
   45            static std::default_random_engine 
generator;
 
 
   54            static std::default_random_engine 
generator;
 
 
   62            static std::default_random_engine 
generator;
 
 
   69            : m_hasDropOut (
false)
 
   70            , m_isInputLayer (
true)
 
   71            , m_hasWeights (
false)
 
   72            , m_hasGradients (
false)
 
 
   82            : m_hasDropOut (
false)
 
   83            , m_isInputLayer (
true)
 
   84            , m_hasWeights (
false)
 
   85            , m_hasGradients (
false)
 
 
  104            , m_hasDropOut (
false)
 
  109            , m_isInputLayer (
false)
 
  110            , m_hasWeights (
true)
 
  111            , m_hasGradients (
true)
 
 
  126            , m_hasDropOut (
false)
 
  129            , m_inverseActivationFunction ()
 
  130            , m_isInputLayer (
false)
 
  131            , m_hasWeights (
true)
 
  132            , m_hasGradients (
false)
 
 
  171            for (
size_t iNode = 0; iNode < 
_numNodes; ++iNode)
 
 
  237            : m_timer (100, 
name)
 
  239            , m_maxProgress (100)
 
  253            , m_convergenceCount (0)
 
  254            , m_maxConvergenceCount (0)
 
 
  285                create (
"ROC", 100, 0, 1, 100, 0, 1);
 
  286                create (
"Significance", 100, 0, 1, 100, 0, 3);
 
  287                create (
"OutputSig", 100, 0, 1);
 
  288                create (
"OutputBkg", 100, 0, 1);
 
 
  408            std::vector<double> 
sigEff;
 
  417                size_t numEvents = 
m_output.size ();
 
  422            clear (
"Significance");
 
  432                double brej = (
tn+fp == 0.0 ? 0.0 : (
tn / (
tn+fp)));
 
 
  563                    num += 
layer.numNodes ();
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
winID h TVirtualViewer3D TVirtualGLPainter p
 
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
 
void startTrainCycle()
action to be done when the training cycle is started (e.g.
 
void endTrainCycle(double)
action to be done when the training cycle is ended (e.g.
 
virtual void endTestCycle()
action to be done when the training cycle is ended (e.g.
 
std::vector< Pattern > * m_pResultPatternContainer
 
void setResultComputation(std::string _fileNameNetConfig, std::string _fileNameResult, std::vector< Pattern > *_resultPatternContainer)
preparation for monitoring output
 
std::string m_fileNameResult
 
std::vector< double > m_significances
 
std::vector< double > m_weights
 
std::string m_fileNameNetConfig
 
std::vector< double > m_targets
 
void testSample(double error, double output, double target, double weight)
action to be done after the computation of a test sample (e.g.
 
size_t m_scaleToNumEvents
 
virtual void startTestCycle()
action to be done when the test cycle is started (e.g.
 
void setWeightSums(double sumOfSigWeights, double sumOfBkgWeights)
set the weight sums to be scaled to (preparations for monitoring output)
 
std::vector< double > m_output
 
const_iterator_type m_itInputBegin
iterator to the first of the nodes in the input node vector
 
std::vector< double > m_deltas
stores the deltas for the DNN training
 
container_type::iterator iterator_type
 
LayerData(const_iterator_type itInputBegin, const_iterator_type itInputEnd, ModeOutputValues eModeOutput=ModeOutputValues::DIRECT)
c'tor of LayerData
 
std::vector< double > container_type
 
std::vector< double > m_values
stores the values of the nodes in this layer
 
const_iterator_type m_itInputEnd
iterator to the end of the nodes in the input node vector
 
container_type::const_iterator const_iterator_type
 
std::vector< double > m_valueGradients
stores the gradients of the values (nodes)
 
container_type computeProbabilities() const
compute the probabilities from the node values
 
ModeOutputValues m_eModeOutput
stores the output mode (DIRECT, SIGMOID, SOFTMAX)
 
std::shared_ptr< std::function< double(double)> > m_activationFunction
stores the activation function
 
std::shared_ptr< std::function< double(double)> > m_inverseActivationFunction
stores the inverse activation function
 
Layer(size_t numNodes, EnumFunction activationFunction, ModeOutputValues eModeOutputValues=ModeOutputValues::DIRECT)
c'tor for defining a Layer
 
std::vector< Layer > m_layers
layer-structure-data
 
size_t inputSize() const
input size of the DNN
 
size_t numNodes(size_t trainingStartLayer=0) const
returns the number of nodes in this net
 
void fillDropContainer(DropContainer &dropContainer, double dropFraction, size_t numNodes) const
prepare the drop-out-container (select the nodes which are to be dropped out)
 
size_t numWeights(size_t trainingStartLayer=0) const
returns the number of weights in this net
 
void clear(std::string histoName)
for monitoring
 
virtual bool hasConverged(double testError)
has this training converged already?
 
Settings(TString name, size_t _convergenceSteps=15, size_t _batchSize=10, size_t _testRepetitions=7, double _factorWeightDecay=1e-5, TMVA::DNN::EnumRegularization _regularization=TMVA::DNN::EnumRegularization::NONE, MinimizerType _eMinimizerType=MinimizerType::fSteepest, double _learningRate=1e-5, double _momentum=0.3, int _repetitions=3, bool _multithreading=true)
c'tor
 
void addPoint(std::string histoName, double x)
for monitoring
 
size_t m_convergenceCount
 
size_t convergenceSteps() const
how many steps until training is deemed to have converged
 
std::shared_ptr< Monitoring > fMonitoring
 
void create(std::string histoName, int bins, double min, double max)
for monitoring
 
size_t m_maxConvergenceCount
 
std::shared_ptr< std::function< double(double)> > InvGauss
 
double uniformDouble(double minValue, double maxValue)
 
std::shared_ptr< std::function< double(double)> > SymmReLU
 
std::shared_ptr< std::function< double(double)> > TanhShift
 
std::shared_ptr< std::function< double(double)> > Tanh
 
std::shared_ptr< std::function< double(double)> > InvSigmoid
 
std::shared_ptr< std::function< double(double)> > SoftPlus
 
std::shared_ptr< std::function< double(double)> > ZeroFnc
 
std::shared_ptr< std::function< double(double)> > InvSoftSign
 
double studenttDouble(double distributionParameter)
 
std::shared_ptr< std::function< double(double)> > InvGaussComplement
 
std::shared_ptr< std::function< double(double)> > InvTanh
 
std::shared_ptr< std::function< double(double)> > Linear
 
std::shared_ptr< std::function< double(double)> > InvReLU
 
std::shared_ptr< std::function< double(double)> > GaussComplement
 
std::shared_ptr< std::function< double(double)> > Gauss
 
MinimizerType
< list all the minimizer types
 
std::shared_ptr< std::function< double(double)> > Sigmoid
 
double gaussDouble(double mean, double sigma)
 
std::shared_ptr< std::function< double(double)> > SoftSign
 
std::shared_ptr< std::function< double(double)> > InvSoftPlus
 
std::shared_ptr< std::function< double(double)> > ReLU
 
bool isFlagSet(T flag, T value)
 
int randomInt(int maxValue)
 
std::shared_ptr< std::function< double(double)> > InvTanhShift
 
std::vector< char > DropContainer
 
std::shared_ptr< std::function< double(double)> > InvSymmReLU
 
std::shared_ptr< std::function< double(double)> > InvLinear
 
create variable transformations
 
static uint64_t sum(uint64_t i)