64 hbiasNorm.Add(
new TH1D(
"h0Norm",
"Bias Histogram fit",100,-5,5));
65 hbiasNorm.Add(
new TH1D(
"h1Norm",
"Bias Binomial fit",100,-5,5));
70 hbiasWidth.Add(
new TH1D(
"h0Width",
"Bias Histogram fit",100,-5,5));
73 "#chi^{2} probability (Baker-Cousins)", 200, 0.0, 1.0);
89 TH1D*
hM2D =
new TH1D(
"hM2D",
"x^(-2) denominator distribution",
91 TH1D*
hM2N =
new TH1D(
"hM2N",
"x^(-2) numerator distribution",
96 TF1*
fM2D =
new TF1(
"fM2D",
"(1-[0]/(1+exp(([1]-x)/[2])))/(x*x)",
98 TF1*
fM2N =
new TF1(
"fM2N",
"[0]/(1+exp(([1]-x)/[2]))/(x*x)",
100 TF1*
fM2Fit =
new TF1(
"fM2Fit",
"[0]/(1+exp(([1]-x)/[2]))",
150 fM2Fit->SetParameter(0, 0.5);
151 fM2Fit->SetParameter(1, 15.0);
152 fM2Fit->SetParameter(2, 2.0);
153 fM2Fit->SetParError(0, 0.1);
154 fM2Fit->SetParError(1, 1.0);
155 fM2Fit->SetParError(2, 0.2);
169 hM2D->DrawCopy(
"HIST");
171 hM2N->DrawCopy(
"HIST SAME");
174 for (
int fit = 0;
fit < 2; ++
fit) {
200 if (
fM2Fit2->GetParameter(0) >= 1.0)
201 fM2Fit2->SetParameter(0, 0.95);
202 fM2Fit2->SetParLimits(0, 0.0, 1.0);
215 std::cerr <<
"Error performing binomial efficiency fit, result = "
216 << status << std::endl;
243 if (status != 0)
break;
272 "Efficiency fit biases",10,10,1000,800);
283 "plateau parameter",
"ndc");
284 l1->AddEntry(
h0,
Form(
"histogram: mean = %4.2f RMS = \
285 %4.2f",
h0->GetMean(),
h0->GetRMS()),
"l");
286 l1->AddEntry(
h1,
Form(
"binomial : mean = %4.2f RMS = \
297 "threshold parameter",
"ndc");
298 l2->AddEntry(
h0,
Form(
"histogram: mean = %4.2f RMS = \
299 %4.2f",
h0->GetMean(),
h0->GetRMS()),
"l");
300 l2->AddEntry(
h1,
Form(
"binomial : mean = %4.2f RMS = \
311 l3->AddEntry(
h0,
Form(
"histogram: mean = %4.2f RMS = \
312 %4.2f",
h0->GetMean(),
h0->GetRMS()),
"l");
313 l3->AddEntry(
h1,
Form(
"binomial : mean = %4.2f RMS = \
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
R__EXTERN TStyle * gStyle
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
void GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double *x, double *ci, double cl=0.95, bool norm=false) const
get confidence intervals for an array of n points x.
static void SetDefaultIntegrator(const char *name)
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Binomial fitter for the division of two histograms.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
void Print(Option_t *option="") const override
Print result of the fit, by default chi2, parameter values and errors.
A TGraphErrors is a TGraph with error bars.
Double_t * GetEY() const override
1-D histogram with a double per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
void Draw(Option_t *option="") override
Draw this histogram with options.
Double_t GetRMS(Int_t axis=1) const
This function returns the Standard Deviation (Sigma) of the distribution not the Root Mean Square (RM...
This class displays a legend box (TPaveText) containing several legend entries.
virtual TObject * DrawClone(Option_t *option="") const
Draw a clone of this object in the current selected pad with: gROOT->SetSelectedPad(c1).
Random number generator class based on M.
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
static void SetDefaultFitter(const char *name="")
static: set name of default fitter
fit(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler)
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.