64   hbiasNorm.Add(
new TH1D(
"h0Norm", 
"Bias Histogram fit",100,-5,5));
 
   65   hbiasNorm.Add(
new TH1D(
"h1Norm",
"Bias Binomial fit",100,-5,5));
 
   70   hbiasWidth.Add(
new TH1D(
"h0Width", 
"Bias Histogram fit",100,-5,5));
 
   73      "#chi^{2} probability (Baker-Cousins)", 200, 0.0, 1.0);
 
   89   TH1D* 
hM2D = 
new TH1D(
"hM2D", 
"x^(-2) denominator distribution",
 
   91   TH1D* 
hM2N = 
new TH1D(
"hM2N", 
"x^(-2) numerator distribution",
 
   96   TF1*  
fM2D = 
new TF1(
"fM2D", 
"(1-[0]/(1+exp(([1]-x)/[2])))/(x*x)",
 
   98   TF1*  
fM2N = 
new TF1(
"fM2N", 
"[0]/(1+exp(([1]-x)/[2]))/(x*x)",
 
  100   TF1*  
fM2Fit = 
new TF1(
"fM2Fit", 
"[0]/(1+exp(([1]-x)/[2]))",
 
  150     fM2Fit->SetParameter(0, 0.5);
 
  151     fM2Fit->SetParameter(1, 15.0);
 
  152     fM2Fit->SetParameter(2, 2.0);
 
  153     fM2Fit->SetParError(0, 0.1);
 
  154     fM2Fit->SetParError(1, 1.0);
 
  155     fM2Fit->SetParError(2, 0.2);
 
  169       hM2D->DrawCopy(
"HIST");
 
  171       hM2N->DrawCopy(
"HIST SAME");
 
  174     for (
int fit = 0; fit < 2; ++fit) {
 
  200          if (
fM2Fit2->GetParameter(0) >= 1.0)
 
  201          fM2Fit2->SetParameter(0, 0.95);
 
  202          fM2Fit2->SetParLimits(0, 0.0, 1.0);
 
  215             std::cerr << 
"Error performing binomial efficiency fit, result = " 
  216             << status << std::endl;
 
  243       if (status != 0) 
break;
 
  272      "Efficiency fit biases",10,10,1000,800);
 
  283      "plateau parameter", 
"ndc");
 
  284   l1->AddEntry(
h0, 
Form(
"histogram: mean = %4.2f RMS = \ 
  285      %4.2f", 
h0->GetMean(), 
h0->GetRMS()), 
"l");
 
  286   l1->AddEntry(
h1, 
Form(
"binomial : mean = %4.2f RMS = \ 
  297      "threshold parameter", 
"ndc");
 
  298   l2->AddEntry(
h0, 
Form(
"histogram: mean = %4.2f RMS = \ 
  299      %4.2f", 
h0->GetMean(), 
h0->GetRMS()), 
"l");
 
  300   l2->AddEntry(
h1, 
Form(
"binomial : mean = %4.2f RMS = \ 
  311   l3->AddEntry(
h0, 
Form(
"histogram: mean = %4.2f RMS = \ 
  312      %4.2f", 
h0->GetMean(), 
h0->GetRMS()), 
"l");
 
  313   l3->AddEntry(
h1, 
Form(
"binomial : mean = %4.2f RMS = \ 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
R__EXTERN TStyle * gStyle
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
void GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double *x, double *ci, double cl=0.95, bool norm=false) const
get confidence intervals for an array of n points x.
static void SetDefaultIntegrator(const char *name)
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Binomial fitter for the division of two histograms.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
void Print(Option_t *option="") const override
Print result of the fit, by default chi2, parameter values and errors.
A TGraphErrors is a TGraph with error bars.
Double_t * GetEY() const override
1-D histogram with a double per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
void Draw(Option_t *option="") override
Draw this histogram with options.
Double_t GetRMS(Int_t axis=1) const
This function returns the Standard Deviation (Sigma) of the distribution not the Root Mean Square (RM...
This class displays a legend box (TPaveText) containing several legend entries.
virtual TObject * DrawClone(Option_t *option="") const
Draw a clone of this object in the current selected pad with: gROOT->SetSelectedPad(c1).
Random number generator class based on M.
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
static void SetDefaultFitter(const char *name="")
static: set name of default fitter
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.