483      data->Draw(
Form(
">>fTestList_%zu",(
size_t)
this),(
const char *)
testcut,
"goff");
 
  487      Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
 
 
  562      data->Draw(
Form(
">>fTestList_%zu",(
size_t)
this),(
const char *)
testcut,
"goff");
 
  566      Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
 
 
  593      std::cerr << 
"Error: data already defined." << std::endl;
 
 
  654      fData->
Draw(
Form(
">>fTrainingList_%zu",(
size_t)
this),train,
"goff");
 
  657      Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
 
 
  679      Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
 
 
  819      Error(
"Train",
"Training/Test samples still not defined. Cannot train the neural network");
 
  822   Info(
"Train",
"Using %d train and %d test entries.",
 
  826      std::cout << 
"Training the Neural Network" << std::endl;
 
  830         canvas = 
new TCanvas(
"NNtraining", 
"Neural Net training");
 
  833         if(!canvas) canvas = 
new TCanvas(
"NNtraining", 
"Neural Net training");
 
  854   for (i = 0; i < 
els; i++)
 
  892               for (i = 0; i < 
els; i++)
 
  924               for (i = 0; i < 
els; i++)
 
  966                  Error(
"TMultiLayerPerceptron::Train()",
"Line search fail");
 
  976         Error(
"TMultiLayerPerceptron::Train()",
"Stop.");
 
  986         std::cout << 
"Epoch: " << 
iepoch 
  997            for (i = 1; i < 
nEpoch; i++) {
 
 1018      std::cout << 
"Training done." << std::endl;
 
 1022                       "Training sample", 
"L");
 
 1024                       "Test sample", 
"L");
 
 
 1038      return out->GetValue();
 
 
 1082      Int_t nEvents = list->GetN();
 
 1083      for (i = 0; i < nEvents; i++) {
 
 1084         error += 
GetError(list->GetEntry(i));
 
 1088      for (i = 0; i < nEvents; i++) {
 
 
 1105   return (error / 2.);
 
 
 1181      for (i = 0; i < nEvents; i++) {
 
 1208      for (i = 0; i < nEvents; i++) {
 
 
 1270   Bool_t normalize = 
false;
 
 
 1340      if(
f.GetMultiplicity()==1 && 
f.GetNdata()>1) {
 
 1341         Warning(
"TMultiLayerPerceptron::ExpandStructure()",
"Variable size arrays cannot be used to build implicitly an input layer. The index 0 will be assumed.");
 
 1348      else if(
f.GetNdata()>1) {
 
 
 1381           hidden(hidden.
Last(
':') + 1,
 
 1383   if (
input.Length() == 0) {
 
 1384      Error(
"BuildNetwork()",
"malformed structure. No input layer.");
 
 1387   if (
output.Length() == 0) {
 
 1388      Error(
"BuildNetwork()",
"malformed structure. No output layer.");
 
 
 1446      Error(
"BuildOneHiddenLayer",
 
 1447            "The specification '%s' for hidden layer %d must contain only numbers!",
 
 1451      for (
Int_t i = 0; i < num; i++) {
 
 
 1539      Error(
"DrawResult()",
"no such output.");
 
 1544      new TCanvas(
"NNresult", 
"Neural Net output");
 
 1545   const Double_t *norm = out->GetNormalisation();
 
 1557      Error(
"DrawResult()",
"no dataset.");
 
 1562      TString title = 
"Neural Net Output control. ";
 
 1570      for (i = 0; i < nEvents; i++) {
 
 1572         hist->
Fill(out->GetValue(), (out->GetBranch() - norm[1]) / norm[0]);
 
 1577      TString title = 
"Neural Net Output. ";
 
 1585      for (i = 0; i < nEvents; i++)
 
 1595         nEvents = 
events->GetN();
 
 1596         for (i = 0; i < nEvents; i++)
 
 
 1612      Error(
"TMultiLayerPerceptron::DumpWeights()",
"Invalid file name");
 
 1620   *
output << 
"#input normalization" << std::endl;
 
 1628   *
output << 
"#output normalization" << std::endl;
 
 1635   *
output << 
"#neurons weights" << std::endl;
 
 1642   *
output << 
"#synapses weights" << std::endl;
 
 1647      ((std::ofstream *) 
output)->close();
 
 
 1662      Error(
"TMultiLayerPerceptron::LoadWeights()",
"Invalid file name");
 
 1665   char *
buff = 
new char[100];
 
 
 1727      return out->GetValue();
 
 
 1744      Warning(
"TMultiLayerPerceptron::Export",
"Request to export a network using an external function");
 
 1760      headerfile << 
"class " << classname << 
" { " << std::endl;
 
 1762      headerfile << 
"   " << classname << 
"() {}" << std::endl;
 
 1763      headerfile << 
"   ~" << classname << 
"() {}" << std::endl;
 
 1764      sourcefile << 
"#include \"" << header << 
"\"" << std::endl;
 
 1765      sourcefile << 
"#include <cmath>" << std::endl << std::endl;
 
 1767      sourcefile << 
"double " << classname << 
"::Value(int index";
 
 1775         sourcefile << 
"   input" << i << 
" = (in" << i << 
" - " 
 1779      sourcefile << 
"   switch(index) {" << std::endl;
 
 1784         sourcefile << 
"     case " << idx++ << 
":" << std::endl
 
 1785                    << 
"         return neuron" << neuron << 
"();" << std::endl;
 
 1787                 << 
"         return 0.;" << std::endl << 
"   }" 
 1790      headerfile << 
"   double Value(int index, double* input);" << std::endl;
 
 1791      sourcefile << 
"double " << classname << 
"::Value(int index, double* input) {" << std::endl;
 
 1793         sourcefile << 
"   input" << i << 
" = (input[" << i << 
"] - " 
 1797      sourcefile << 
"   switch(index) {" << std::endl;
 
 1802         sourcefile << 
"     case " << idx++ << 
":" << std::endl
 
 1803                    << 
"         return neuron" << neuron << 
"();" << std::endl;
 
 1805                 << 
"         return 0.;" << std::endl << 
"   }" 
 1810         headerfile << 
"   double input" << i << 
";" << std::endl;
 
 1815         if (!neuron->
GetPre(0)) {
 
 1816            headerfile << 
"   double neuron" << neuron << 
"();" << std::endl;
 
 1817            sourcefile << 
"double " << classname << 
"::neuron" << neuron
 
 1818                       << 
"() {" << std::endl;
 
 1819            sourcefile << 
"   return input" << idx++ << 
";" << std::endl;
 
 1822            headerfile << 
"   double input" << neuron << 
"();" << std::endl;
 
 1823            sourcefile << 
"double " << classname << 
"::input" << neuron
 
 1824                       << 
"() {" << std::endl;
 
 1826                       << 
";" << std::endl;
 
 1830               sourcefile << 
"   input += synapse" << 
syn << 
"();" << std::endl;
 
 1835            headerfile << 
"   double neuron" << neuron << 
"();" << std::endl;
 
 1836            sourcefile << 
"double " << classname << 
"::neuron" << neuron << 
"() {" << std::endl;
 
 1837            sourcefile << 
"   double input = input" << neuron << 
"();" << std::endl;
 
 1841                     sourcefile << 
"   return ((input < -709. ? 0. : (1/(1+exp(-input)))) * ";
 
 1856                     sourcefile << 
"   return (exp(-input*input) * ";
 
 1866                        sourcefile << 
" + exp(input" << side << 
"())";
 
 1885         sourcefile << 
"double " << classname << 
"::synapse" 
 1886                    << 
synapse << 
"() {" << std::endl;
 
 1888                    << 
"()*" << 
synapse->GetWeight() << 
");" << std::endl;
 
 1892      headerfile << 
"};" << std::endl << std::endl;
 
 1896      std::cout << header << 
" and " << 
source << 
" created." << std::endl;
 
 1898   else if(
lg == 
"FORTRAN") {
 
 1900      std::ofstream 
sigmoid(
"sigmoid.f");
 
 1901      sigmoid         << 
"      double precision FUNCTION SIGMOID(X)"        << std::endl
 
 1903                << 
"      IF(X.GT.37.) THEN"                        << std::endl
 
 1904                    << 
"         SIGMOID = 1."                        << std::endl
 
 1905                << 
"      ELSE IF(X.LT.-709.) THEN"                << std::endl
 
 1906                    << 
"         SIGMOID = 0."                        << std::endl
 
 1907                    << 
"      ELSE"                                        << std::endl
 
 1908                    << 
"         SIGMOID = 1./(1.+EXP(-X))"                << std::endl
 
 1909                    << 
"      ENDIF"                                << std::endl
 
 1910                    << 
"      END"                                        << std::endl;
 
 1918                 << 
"(x, index)" << std::endl;
 
 1924      sourcefile << 
"C --- Last Layer" << std::endl;
 
 1932                    << 
"=neuron" << neuron << 
"(x);" << std::endl;
 
 1936                 << 
"          " << 
filename << 
"=0.d0" << std::endl
 
 1937                 << 
"      endif" << std::endl;
 
 1941      sourcefile << 
"C --- First and Hidden layers" << std::endl;
 
 1946         sourcefile << 
"      double precision function neuron" 
 1947                    << neuron << 
"(x)" << std::endl
 
 1951         if (!neuron->
GetPre(0)) {
 
 1953             << 
" = (x(" << idx+1 << 
") - " 
 1957             << 
"d0" << std::endl;
 
 1961                       << 
" = " << neuron->
GetWeight() << 
"d0" << std::endl;
 
 1966                              << 
" = neuron" << neuron
 
 1967                          << 
" + synapse" << 
syn << 
"(x)" << std::endl;
 
 1972                                << 
"= (sigmoid(neuron" << neuron << 
")*";
 
 1982                                << 
"= (tanh(neuron" << neuron << 
")*";
 
 1988                                << 
"= (exp(-neuron" << neuron << 
"*neuron" 
 1996                     sourcefile << 
"      div = exp(neuron" << side << 
"())" << std::endl;
 
 1998                        sourcefile << 
"      div = div + exp(neuron" << side << 
"())" << std::endl;
 
 2000                     sourcefile << 
"= (exp(neuron" << neuron << 
") / div * ";
 
 2005                     sourcefile << 
"   neuron " << neuron << 
"= 0.";
 
 2020         sourcefile << 
"      double precision function " << 
"synapse" 
 2025                    << 
"=neuron" << 
synapse->GetPre()
 
 2026                    << 
"(x)*" << 
synapse->GetWeight() << 
"d0" << std::endl;
 
 2027         sourcefile << 
"      end" << std::endl << std::endl;
 
 2031      std::cout << 
source << 
" created." << std::endl;
 
 2033   else if(
lg == 
"PYTHON") {
 
 2038      pythonfile << 
"from math import exp" << std::endl << std::endl;
 
 2039      pythonfile << 
"from math import tanh" << std::endl << std::endl;
 
 2040      pythonfile << 
"class " << classname << 
":" << std::endl;
 
 2047         pythonfile << 
"\t\tself.input" << i << 
" = (in" << i << 
" - " 
 2055                    << 
": return self.neuron" << neuron << 
"();" << std::endl;
 
 2061         pythonfile << 
"\tdef neuron" << neuron << 
"(self):" << std::endl;
 
 2063            pythonfile << 
"\t\treturn self.input" << idx++ << std::endl;
 
 2069               pythonfile << 
"\t\tinput = input + self.synapse" 
 2070                          << 
syn << 
"()" << std::endl;
 
 2075                     pythonfile << 
"\t\treturn ((1/(1+exp(-input)))*";
 
 2090                     pythonfile << 
"\t\treturn (exp(-input*input)*";
 
 2098                     pythonfile << 
"exp(self.neuron" << side << 
"())";
 
 2100                        pythonfile << 
" + exp(self.neuron" << side << 
"())";
 
 2119                    << 
"()*" << 
synapse->GetWeight() << 
")" << std::endl;
 
 2123      std::cout << 
pyfile << 
" created." << std::endl;
 
 
 2145   for (
Int_t i = 0; i < 
n; i++) {
 
 
 2163   for (i = 0; i < nEvents; i++)
 
 2169   for (i = 0; i < nEvents; i++) {
 
 
 2442      gamma[idx++][0] = -neuron->
GetDEDw();
 
 2447      gamma[idx++][0] = -
synapse->GetDEDw();
 
 2450      delta[i].Assign(buffer[i]);
 
 2457      gamma[idx++][0] += neuron->
GetDEDw();
 
 2462      gamma[idx++][0] += 
synapse->GetDEDw();
 
 
 2526#define NeuronSize 2.5 
 2646      if (neuron && neuron->
GetName()) {
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void reg
 
TMatrixT< Double_t > TMatrixD
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
R__EXTERN TSystem * gSystem
 
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
 
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
 
virtual void SetLeftMargin(Float_t leftmargin)
Set Pad left margin in fraction of the pad width.
 
static TClass * GetClass(const char *name, Bool_t load=kTRUE, Bool_t silent=kFALSE)
Static method returning pointer to TClass of the specified class name.
 
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
 
TDirectory::TContext keeps track and restore the current directory.
 
<div class="legacybox"><h2>Legacy Code</h2> TEventList is a legacy interface: there will be no bug fi...
 
virtual Long64_t GetEntry(Int_t index) const
Return value of entry at index in the list.
 
virtual Int_t GetN() const
 
A TGraph is an object made of two arrays X and Y with npoints each.
 
1-D histogram with a double per channel (see TH1 documentation)
 
void Reset(Option_t *option="") override
Reset.
 
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
 
void Draw(Option_t *option="") override
Draw this histogram with options.
 
2-D histogram with a double per channel (see TH1 documentation)
 
void Reset(Option_t *option="") override
Reset this histogram: contents, errors, etc.
 
Int_t Fill(Double_t) override
Invalid Fill method.
 
This class displays a legend box (TPaveText) containing several legend entries.
 
Use the TLine constructor to create a simple line.
 
void Draw(Option_t *option="") override
Draw this marker with its current attributes.
 
A TMultiGraph is a collection of TGraph (or derived) objects.
 
This class describes a neural network.
 
TTreeFormula * fEventWeight
! formula representing the event weight
 
void BuildOneHiddenLayer(const TString &sNumNodes, Int_t &layer, Int_t &prevStart, Int_t &prevStop, Bool_t lastLayer)
Builds a hidden layer, updates the number of layers.
 
void SteepestDir(Double_t *)
Sets the search direction to steepest descent.
 
void BuildNetwork()
Instantiates the network from the description.
 
TObjArray fNetwork
Collection of all the neurons in the network.
 
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
 
TEventList * fTest
! EventList defining the events in the test dataset
 
bool GetBFGSH(TMatrixD &, TMatrixD &, TMatrixD &)
Computes the hessian matrix using the BFGS update algorithm.
 
void BuildHiddenLayers(TString &)
Builds hidden layers.
 
void BuildFirstLayer(TString &)
Instantiates the neurons in input Inputs are normalised and the type is set to kOff (simple forward o...
 
void SetTau(Double_t tau)
Sets Tau - used in line search (look at the constructor for the complete description of learning meth...
 
TMultiLayerPerceptron()
Default constructor.
 
Double_t GetSumSquareError() const
Error on the output for a given event.
 
void ConjugateGradientsDir(Double_t *, Double_t)
Sets the search direction to conjugate gradient direction beta should be:
 
Double_t fTau
! Tau - used in line search - Default=3.
 
TTree * fData
! pointer to the tree used as datasource
 
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
 
void SetGammaDelta(TMatrixD &, TMatrixD &, Double_t *)
Sets the gamma  and delta  vectors Gamma is computed here, so ComputeDEDw cannot have been called bef...
 
TEventList * fTraining
! EventList defining the events in the training dataset
 
TString fStructure
String containing the network structure.
 
Int_t fReset
! number of epochs between two resets of the search direction to the steepest descent - Default=50
 
Bool_t LoadWeights(Option_t *filename="")
Loads the weights from a text file conforming to the format defined by DumpWeights.
 
void MLP_Batch(Double_t *)
One step for the batch (stochastic) method.
 
TNeuron::ENeuronType fOutType
Type of output neurons.
 
Double_t fCurrentTreeWeight
! weight of the current tree in a chain
 
ELearningMethod fLearningMethod
! The Learning Method
 
Double_t fLastAlpha
! internal parameter used in line search
 
Int_t fCurrentTree
! index of the current tree in a chain
 
void Export(Option_t *filename="NNfunction", Option_t *language="C++") const
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ ,...
 
Double_t fEpsilon
! Epsilon - used in stochastic minimisation - Default=0.
 
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
 
TNeuron::ENeuronType GetType() const
 
void BFGSDir(TMatrixD &, Double_t *)
Computes the direction for the BFGS algorithm as the product between the Hessian estimate (bfgsh) and...
 
void SetTestDataSet(TEventList *test)
Sets the Test dataset.
 
Bool_t fTrainingOwner
! internal flag whether one has to delete fTraining or not
 
void SetLearningMethod(TMultiLayerPerceptron::ELearningMethod method)
Sets the learning method.
 
void SetTrainingDataSet(TEventList *train)
Sets the Training dataset.
 
void BuildLastLayer(TString &, Int_t)
Builds the output layer Neurons are linear combinations of input, by default.
 
Double_t fDelta
! Delta - used in stochastic minimisation - Default=0.
 
TTreeFormulaManager * fManager
! TTreeFormulaManager for the weight and neurons
 
void Randomize() const
Randomize the weights.
 
Bool_t LineSearch(Double_t *, Double_t *)
Search along the line defined by direction.
 
void ExpandStructure()
Expand the structure of the first layer.
 
Double_t fEta
! Eta - used in stochastic minimisation - Default=0.1
 
Double_t GetError(Int_t event) const
Error on the output for a given event.
 
Double_t fEtaDecay
! EtaDecay - Eta *= EtaDecay at each epoch - Default=1.
 
void SetEtaDecay(Double_t ed)
Sets EtaDecay - Eta *= EtaDecay at each epoch (look at the constructor for the complete description o...
 
void AttachData()
Connects the TTree to Neurons in input and output layers.
 
void SetData(TTree *)
Set the data source.
 
void SetEventWeight(const char *)
Set the event weight.
 
Bool_t DumpWeights(Option_t *filename="-") const
Dumps the weights to a text file.
 
TString fWeight
String containing the event weight.
 
void SetDelta(Double_t delta)
Sets Delta - used in stochastic minimisation (look at the constructor for the complete description of...
 
~TMultiLayerPerceptron() override
Destructor.
 
Double_t GetCrossEntropy() const
Cross entropy error for a softmax output neuron, for a given event.
 
void SetReset(Int_t reset)
Sets number of epochs between two resets of the search direction to the steepest descent.
 
Bool_t fTestOwner
! internal flag whether one has to delete fTest or not
 
void Shuffle(Int_t *, Int_t) const
Shuffle the Int_t index[n] in input.
 
Double_t DerivDir(Double_t *)
scalar product between gradient and direction = derivative along direction
 
void MLP_Stochastic(Double_t *)
One step for the stochastic method buffer should contain the previous dw vector and will be updated.
 
void Draw(Option_t *option="") override
Draws the network structure.
 
TObjArray fSynapses
Collection of all the synapses in the network.
 
void MLP_Line(Double_t *, Double_t *, Double_t)
Sets the weights to a point along a line Weights are set to [origin + (dist * dir)].
 
TNeuron::ENeuronType fType
Type of hidden neurons.
 
TObjArray fLastLayer
Collection of the output neurons; subset of fNetwork.
 
TString fextD
String containing the derivative name.
 
void ComputeDEDw() const
Compute the DEDw = sum on all training events of dedw for each weight normalized by the number of eve...
 
Double_t GetCrossEntropyBinary() const
Cross entropy error for sigmoid output neurons, for a given event.
 
void DrawResult(Int_t index=0, Option_t *option="test") const
Draws the neural net output It produces an histogram with the output for the two datasets.
 
void SetEta(Double_t eta)
Sets Eta - used in stochastic minimisation (look at the constructor for the complete description of l...
 
TObjArray fFirstLayer
Collection of the input neurons; subset of fNetwork.
 
void GetEntry(Int_t) const
Load an entry into the network.
 
void SetEpsilon(Double_t eps)
Sets Epsilon - used in stochastic minimisation (look at the constructor for the complete description ...
 
TString fextF
String containing the function name.
 
const char * GetName() const override
Returns name of object.
 
This class describes an elementary neuron, which is the basic element for a Neural Network.
 
Double_t GetWeight() const
 
void SetWeight(Double_t w)
Sets the neuron weight to w.
 
Double_t GetValue() const
Computes the output using the appropriate function and all the weighted inputs, or uses the branch as...
 
void SetDEDw(Double_t in)
Sets the derivative of the total error wrt the neuron weight.
 
Double_t GetDeDw() const
Computes the derivative of the error wrt the neuron weight.
 
TNeuron * GetInLayer(Int_t n) const
 
Double_t GetError() const
Computes the error for output neurons.
 
TTreeFormula * UseBranch(TTree *, const char *)
Sets a formula that can be used to make the neuron an input.
 
TSynapse * GetPre(Int_t n) const
 
void ForceExternalValue(Double_t value)
Uses the branch type to force an external value.
 
Double_t GetTarget() const
Computes the normalized target pattern for output neurons.
 
const Double_t * GetNormalisation() const
 
ENeuronType GetType() const
Returns the neuron type.
 
void SetNewEvent() const
Inform the neuron that inputs of the network have changed, so that the buffered values have to be rec...
 
void SetNormalisation(Double_t mean, Double_t RMS)
Sets the normalization variables.
 
void AddInLayer(TNeuron *)
Tells a neuron which neurons form its layer (including itself).
 
Iterator of object array.
 
TObject * Next() override
Return next object in array. Returns 0 when no more objects in array.
 
Int_t GetEntriesFast() const
 
TIterator * MakeIterator(Bool_t dir=kIterForward) const override
Returns an array iterator.
 
TObject * At(Int_t idx) const override
 
void AddLast(TObject *obj) override
Add object in the next empty slot in the array.
 
TObject * UncheckedAt(Int_t i) const
 
Collectable string class.
 
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
 
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
 
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
 
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
 
Random number generator class based on M.
 
Double_t Rndm() override
Machine independent random number generator.
 
Regular expression class.
 
void ToLower()
Change string to lower-case.
 
Bool_t EndsWith(const char *pat, ECaseCompare cmp=kExact) const
Return true if string ends with the specified string.
 
Ssiz_t First(char c) const
Find first occurrence of a character c.
 
const char * Data() const
 
Ssiz_t Last(char c) const
Find last occurrence of a character c.
 
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
 
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
 
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
 
This is a simple weighted bidirectional connection between two neurons.
 
virtual int Load(const char *module, const char *entry="", Bool_t system=kFALSE)
Load a shared library.
 
virtual Bool_t ProcessEvents()
Process pending events (GUI, timers, sockets).
 
Base class for several text objects.
 
The TTimeStamp encapsulates seconds and ns since EPOCH.
 
A TTree represents a columnar dataset.
 
virtual Int_t GetEntry(Long64_t entry, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
 
virtual Double_t GetWeight() const
 
void Draw(Option_t *opt) override
Default Draw method for all objects.
 
virtual Long64_t GetEntries() const
 
virtual Int_t GetTreeNumber() const
 
TVirtualPad is an abstract base class for the Pad and Canvas classes.
 
virtual void Modified(Bool_t flag=1)=0
 
Double_t Log(Double_t x)
Returns the natural logarithm of x.
 
Double_t Sqrt(Double_t x)
Returns the square root of x.
 
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.