321 const char* extF,
const char* extD)
380 const char * weight,
TTree * data,
384 const char* extF,
const char* extD)
446 const char * training,
449 const char* extF,
const char* extD)
466 if(testcut==
"") testcut =
Form(
"!(%s)",training);
476 data->
Draw(
Form(
">>fTestList_%lu",(
ULong_t)
this),(
const char *)testcut,
"goff");
480 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
518 const char * weight,
TTree * data,
519 const char * training,
522 const char* extF,
const char* extD)
539 if(testcut==
"") testcut =
Form(
"!(%s)",training);
549 data->
Draw(
Form(
">>fTestList_%lu",(
ULong_t)
this),(
const char *)testcut,
"goff");
553 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
580 std::cerr <<
"Error: data already defined." << std::endl;
641 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
660 Warning(
"TMultiLayerPerceptron::TMultiLayerPerceptron",
"Data not set. Cannot define datasets");
777 Bool_t minE_Train =
false;
783 Int_t displayStepping = 1;
787 displayStepping = atoi(out.
Data() + 7);
797 TGraph *train_residual_plot = 0;
798 TGraph *test_residual_plot = 0;
800 Error(
"Train",
"Training/Test samples still not defined. Cannot train the neural network");
803 Info(
"Train",
"Using %d train and %d test entries.",
807 std::cout <<
"Training the Neural Network" << std::endl;
811 canvas =
new TCanvas(
"NNtraining",
"Neural Net training");
814 if(!canvas) canvas =
new TCanvas(
"NNtraining",
"Neural Net training");
816 train_residual_plot =
new TGraph(nEpoch);
817 test_residual_plot =
new TGraph(nEpoch);
821 residual_plot->
Add(train_residual_plot);
822 residual_plot->
Add(test_residual_plot);
823 residual_plot->
Draw(
"LA");
835 for (i = 0; i < els; i++)
838 TMatrixD bfgsh(matrix_size, matrix_size);
844 for (
Int_t iepoch = 0; (iepoch < nEpoch) && (!minE_Train || training_E>minE) && (!minE_Test || test_E>minE) ; iepoch++) {
873 for (i = 0; i < els; i++)
874 onorm += dir[i] * dir[i];
882 prod -= dir[idx++] * neuron->
GetDEDw();
888 prod -= dir[idx++] * synapse->
GetDEDw();
905 for (i = 0; i < els; i++)
906 onorm += dir[i] * dir[i];
947 Error(
"TMultiLayerPerceptron::Train()",
"Line search fail");
957 Error(
"TMultiLayerPerceptron::Train()",
"Stop.");
966 if ((verbosity % 2) && ((!(iepoch % displayStepping)) || (iepoch == nEpoch - 1))) {
967 std::cout <<
"Epoch: " << iepoch
968 <<
" learn=" << training_E
969 <<
" test=" << test_E
973 train_residual_plot->
SetPoint(iepoch, iepoch,training_E);
974 test_residual_plot->
SetPoint(iepoch, iepoch,test_E);
978 for (i = 1; i < nEpoch; i++) {
979 train_residual_plot->
SetPoint(i, i, trp);
980 test_residual_plot->
SetPoint(i, i, tep);
983 if ((!(iepoch % displayStepping)) || (iepoch == nEpoch - 1)) {
999 std::cout <<
"Training done." << std::endl;
1000 if (verbosity / 2) {
1003 "Training sample",
"L");
1005 "Test sample",
"L");
1033 if (nEntries == 0)
return 0.0;
1064 for (i = 0; i < nEvents; i++) {
1069 for (i = 0; i < nEvents; i++) {
1086 return (error / 2.);
1099 if (target < DBL_EPSILON) {
1105 if ((1 - target) < DBL_EPSILON) {
1130 if (target > DBL_EPSILON) {
1162 for (i = 0; i < nEvents; i++) {
1189 for (i = 0; i < nEvents; i++) {
1251 Bool_t normalize =
false;
1255 Int_t maxop, maxpar, maxconst;
1317 for (i = 0; i<nneurons; i++) {
1321 if(
f.GetMultiplicity()==1 &&
f.GetNdata()>1) {
1322 Warning(
"TMultiLayerPerceptron::ExpandStructure()",
"Variable size arrays cannot be used to build implicitly an input layer. The index 0 will be assumed.");
1329 else if(
f.GetNdata()>1) {
1330 for(
Int_t j=0; j<
f.GetNdata(); j++) {
1331 if(i||j) newInput +=
",";
1339 if(i) newInput +=
",";
1345 fStructure = newInput +
":" + hiddenAndOutput;
1362 hidden(hidden.
Last(
':') + 1,
1364 if (input.
Length() == 0) {
1365 Error(
"BuildNetwork()",
"malformed structure. No input layer.");
1368 if (
output.Length() == 0) {
1369 Error(
"BuildNetwork()",
"malformed structure. No output layer.");
1388 for (i = 0; i<nneurons; i++) {
1404 Int_t prevStart = 0;
1410 end = hidden.
Index(
":", beg + 1);
1427 Error(
"BuildOneHiddenLayer",
1428 "The specification '%s' for hidden layer %d must contain only numbers!",
1429 sNumNodes.
Data(), layer - 1);
1432 for (
Int_t i = 0; i < num; i++) {
1433 name.Form(
"HiddenL%d:N%d",layer,i);
1436 for (
Int_t j = prevStart; j < prevStop; j++) {
1445 for (
Int_t i = prevStop; i < nEntries; i++) {
1447 for (
Int_t j = prevStop; j < nEntries; j++)
1452 prevStart = prevStop;
1475 Int_t prevStart = prevStop - prev;
1481 for (i = 0; i<nneurons; i++) {
1488 for (j = prevStart; j < prevStop; j++) {
1497 for (i = prevStop; i < nEntries; i++) {
1499 for (j = prevStop; j < nEntries; j++)
1520 Error(
"DrawResult()",
"no such output.");
1525 new TCanvas(
"NNresult",
"Neural Net output");
1532 setname =
Form(
"train%d",index);
1535 setname =
Form(
"test%d",index);
1537 if ((!
fData) || (!events)) {
1538 Error(
"DrawResult()",
"no dataset.");
1543 TString title =
"Neural Net Output control. ";
1545 setname =
"MLP_" + setname +
"_comp";
1548 hist =
new TH2D(setname.
Data(), title.
Data(), 50, -1, 1, 50, -1, 1);
1551 for (i = 0; i < nEvents; i++) {
1558 TString title =
"Neural Net Output. ";
1560 setname =
"MLP_" + setname;
1563 hist =
new TH1D(setname, title, 50, 1, -1);
1566 for (i = 0; i < nEvents; i++)
1574 hist =
new TH1D(setname, title, 50, 1, -1);
1576 nEvents = events->
GetN();
1577 for (i = 0; i < nEvents; i++)
1593 Error(
"TMultiLayerPerceptron::DumpWeights()",
"Invalid file name");
1601 *
output <<
"#input normalization" << std::endl;
1609 *
output <<
"#output normalization" << std::endl;
1616 *
output <<
"#neurons weights" << std::endl;
1623 *
output <<
"#synapses weights" << std::endl;
1628 ((std::ofstream *)
output)->close();
1643 Error(
"TMultiLayerPerceptron::LoadWeights()",
"Invalid file name");
1646 char *buff =
new char[100];
1647 std::ifstream input(filen.
Data());
1649 input.getline(buff, 100);
1657 input.getline(buff, 100);
1659 input.getline(buff, 100);
1666 input.getline(buff, 100);
1668 input.getline(buff, 100);
1676 input.getline(buff, 100);
1678 input.getline(buff, 100);
1725 Warning(
"TMultiLayerPerceptron::Export",
"Request to export a network using an external function");
1728 TString basefilename = filename;
1732 TString classname = basefilename;
1737 std::ofstream headerfile(header);
1738 std::ofstream sourcefile(source);
1739 headerfile <<
"#ifndef " << basefilename <<
"_h" << std::endl;
1740 headerfile <<
"#define " << basefilename <<
"_h" << std::endl << std::endl;
1741 headerfile <<
"class " << classname <<
" { " << std::endl;
1742 headerfile <<
"public:" << std::endl;
1743 headerfile <<
" " << classname <<
"() {}" << std::endl;
1744 headerfile <<
" ~" << classname <<
"() {}" << std::endl;
1745 sourcefile <<
"#include \"" << header <<
"\"" << std::endl;
1746 sourcefile <<
"#include <cmath>" << std::endl << std::endl;
1747 headerfile <<
" double Value(int index";
1748 sourcefile <<
"double " << classname <<
"::Value(int index";
1750 headerfile <<
",double in" << i;
1751 sourcefile <<
",double in" << i;
1753 headerfile <<
");" << std::endl;
1754 sourcefile <<
") {" << std::endl;
1756 sourcefile <<
" input" << i <<
" = (in" << i <<
" - "
1760 sourcefile <<
" switch(index) {" << std::endl;
1765 sourcefile <<
" case " << idx++ <<
":" << std::endl
1766 <<
" return neuron" << neuron <<
"();" << std::endl;
1767 sourcefile <<
" default:" << std::endl
1768 <<
" return 0.;" << std::endl <<
" }"
1770 sourcefile <<
"}" << std::endl << std::endl;
1771 headerfile <<
" double Value(int index, double* input);" << std::endl;
1772 sourcefile <<
"double " << classname <<
"::Value(int index, double* input) {" << std::endl;
1774 sourcefile <<
" input" << i <<
" = (input[" << i <<
"] - "
1778 sourcefile <<
" switch(index) {" << std::endl;
1783 sourcefile <<
" case " << idx++ <<
":" << std::endl
1784 <<
" return neuron" << neuron <<
"();" << std::endl;
1785 sourcefile <<
" default:" << std::endl
1786 <<
" return 0.;" << std::endl <<
" }"
1788 sourcefile <<
"}" << std::endl << std::endl;
1789 headerfile <<
"private:" << std::endl;
1791 headerfile <<
" double input" << i <<
";" << std::endl;
1796 if (!neuron->
GetPre(0)) {
1797 headerfile <<
" double neuron" << neuron <<
"();" << std::endl;
1798 sourcefile <<
"double " << classname <<
"::neuron" << neuron
1799 <<
"() {" << std::endl;
1800 sourcefile <<
" return input" << idx++ <<
";" << std::endl;
1801 sourcefile <<
"}" << std::endl << std::endl;
1803 headerfile <<
" double input" << neuron <<
"();" << std::endl;
1804 sourcefile <<
"double " << classname <<
"::input" << neuron
1805 <<
"() {" << std::endl;
1806 sourcefile <<
" double input = " << neuron->
GetWeight()
1807 <<
";" << std::endl;
1810 while ((syn = neuron->
GetPre(
n++))) {
1811 sourcefile <<
" input += synapse" << syn <<
"();" << std::endl;
1813 sourcefile <<
" return input;" << std::endl;
1814 sourcefile <<
"}" << std::endl << std::endl;
1816 headerfile <<
" double neuron" << neuron <<
"();" << std::endl;
1817 sourcefile <<
"double " << classname <<
"::neuron" << neuron <<
"() {" << std::endl;
1818 sourcefile <<
" double input = input" << neuron <<
"();" << std::endl;
1822 sourcefile <<
" return ((input < -709. ? 0. : (1/(1+exp(-input)))) * ";
1827 sourcefile <<
" return (input * ";
1832 sourcefile <<
" return (tanh(input) * ";
1837 sourcefile <<
" return (exp(-input*input) * ";
1842 sourcefile <<
" return (exp(input) / (";
1845 sourcefile <<
"exp(input" << side <<
"())";
1847 sourcefile <<
" + exp(input" << side <<
"())";
1848 sourcefile <<
") * ";
1853 sourcefile <<
" return (0.0 * ";
1858 sourcefile <<
"}" << std::endl << std::endl;
1865 headerfile <<
" double synapse" << synapse <<
"();" << std::endl;
1866 sourcefile <<
"double " << classname <<
"::synapse"
1867 << synapse <<
"() {" << std::endl;
1868 sourcefile <<
" return (neuron" << synapse->
GetPre()
1869 <<
"()*" << synapse->
GetWeight() <<
");" << std::endl;
1870 sourcefile <<
"}" << std::endl << std::endl;
1873 headerfile <<
"};" << std::endl << std::endl;
1874 headerfile <<
"#endif // " << basefilename <<
"_h" << std::endl << std::endl;
1877 std::cout << header <<
" and " << source <<
" created." << std::endl;
1879 else if(lg ==
"FORTRAN") {
1880 TString implicit =
" implicit double precision (a-h,n-z)\n";
1881 std::ofstream sigmoid(
"sigmoid.f");
1882 sigmoid <<
" double precision FUNCTION SIGMOID(X)" << std::endl
1884 <<
" IF(X.GT.37.) THEN" << std::endl
1885 <<
" SIGMOID = 1." << std::endl
1886 <<
" ELSE IF(X.LT.-709.) THEN" << std::endl
1887 <<
" SIGMOID = 0." << std::endl
1888 <<
" ELSE" << std::endl
1889 <<
" SIGMOID = 1./(1.+EXP(-X))" << std::endl
1890 <<
" ENDIF" << std::endl
1891 <<
" END" << std::endl;
1895 std::ofstream sourcefile(source);
1898 sourcefile <<
" double precision function " << filename
1899 <<
"(x, index)" << std::endl;
1900 sourcefile << implicit;
1901 sourcefile <<
" double precision x(" <<
1905 sourcefile <<
"C --- Last Layer" << std::endl;
1909 TString ifelseif =
" if (index.eq.";
1911 sourcefile << ifelseif.
Data() << idx++ <<
") then" << std::endl
1913 <<
"=neuron" << neuron <<
"(x);" << std::endl;
1914 ifelseif =
" else if (index.eq.";
1916 sourcefile <<
" else" << std::endl
1917 <<
" " << filename <<
"=0.d0" << std::endl
1918 <<
" endif" << std::endl;
1919 sourcefile <<
" end" << std::endl;
1922 sourcefile <<
"C --- First and Hidden layers" << std::endl;
1927 sourcefile <<
" double precision function neuron"
1928 << neuron <<
"(x)" << std::endl
1930 sourcefile <<
" double precision x("
1932 if (!neuron->
GetPre(0)) {
1933 sourcefile <<
" neuron" << neuron
1934 <<
" = (x(" << idx+1 <<
") - "
1938 <<
"d0" << std::endl;
1941 sourcefile <<
" neuron" << neuron
1942 <<
" = " << neuron->
GetWeight() <<
"d0" << std::endl;
1945 while ((syn = neuron->
GetPre(
n++)))
1946 sourcefile <<
" neuron" << neuron
1947 <<
" = neuron" << neuron
1948 <<
" + synapse" << syn <<
"(x)" << std::endl;
1952 sourcefile <<
" neuron" << neuron
1953 <<
"= (sigmoid(neuron" << neuron <<
")*";
1962 sourcefile <<
" neuron" << neuron
1963 <<
"= (tanh(neuron" << neuron <<
")*";
1968 sourcefile <<
" neuron" << neuron
1969 <<
"= (exp(-neuron" << neuron <<
"*neuron"
1977 sourcefile <<
" div = exp(neuron" << side <<
"())" << std::endl;
1979 sourcefile <<
" div = div + exp(neuron" << side <<
"())" << std::endl;
1980 sourcefile <<
" neuron" << neuron ;
1981 sourcefile <<
"= (exp(neuron" << neuron <<
") / div * ";
1986 sourcefile <<
" neuron " << neuron <<
"= 0.";
1992 sourcefile <<
" end" << std::endl;
1997 sourcefile <<
"C --- Synapses" << std::endl;
2001 sourcefile <<
" double precision function " <<
"synapse"
2002 << synapse <<
"(x)\n" << implicit;
2003 sourcefile <<
" double precision x("
2005 sourcefile <<
" synapse" << synapse
2006 <<
"=neuron" << synapse->
GetPre()
2007 <<
"(x)*" << synapse->
GetWeight() <<
"d0" << std::endl;
2008 sourcefile <<
" end" << std::endl << std::endl;
2012 std::cout << source <<
" created." << std::endl;
2014 else if(lg ==
"PYTHON") {
2018 std::ofstream pythonfile(pyfile);
2019 pythonfile <<
"from math import exp" << std::endl << std::endl;
2020 pythonfile <<
"from math import tanh" << std::endl << std::endl;
2021 pythonfile <<
"class " << classname <<
":" << std::endl;
2022 pythonfile <<
"\tdef value(self,index";
2024 pythonfile <<
",in" << i;
2026 pythonfile <<
"):" << std::endl;
2028 pythonfile <<
"\t\tself.input" << i <<
" = (in" << i <<
" - "
2035 pythonfile <<
"\t\tif index==" << idx++
2036 <<
": return self.neuron" << neuron <<
"();" << std::endl;
2037 pythonfile <<
"\t\treturn 0." << std::endl;
2042 pythonfile <<
"\tdef neuron" << neuron <<
"(self):" << std::endl;
2044 pythonfile <<
"\t\treturn self.input" << idx++ << std::endl;
2046 pythonfile <<
"\t\tinput = " << neuron->
GetWeight() << std::endl;
2049 while ((syn = neuron->
GetPre(
n++)))
2050 pythonfile <<
"\t\tinput = input + self.synapse"
2051 << syn <<
"()" << std::endl;
2055 pythonfile <<
"\t\tif input<-709. : return " << neuron->
GetNormalisation()[1] << std::endl;
2056 pythonfile <<
"\t\treturn ((1/(1+exp(-input)))*";
2061 pythonfile <<
"\t\treturn (input*";
2066 pythonfile <<
"\t\treturn (tanh(input)*";
2071 pythonfile <<
"\t\treturn (exp(-input*input)*";
2076 pythonfile <<
"\t\treturn (exp(input) / (";
2079 pythonfile <<
"exp(self.neuron" << side <<
"())";
2081 pythonfile <<
" + exp(self.neuron" << side <<
"())";
2082 pythonfile <<
") * ";
2087 pythonfile <<
"\t\treturn 0.";
2098 pythonfile <<
"\tdef synapse" << synapse <<
"(self):" << std::endl;
2099 pythonfile <<
"\t\treturn (self.neuron" << synapse->
GetPre()
2100 <<
"()*" << synapse->
GetWeight() <<
")" << std::endl;
2104 std::cout << pyfile <<
" created." << std::endl;
2126 for (
Int_t i = 0; i <
n; i++) {
2129 index[j] = index[i];
2144 for (i = 0; i < nEvents; i++)
2150 for (i = 0; i < nEvents; i++) {
2241 dir[idx++] = -neuron->
GetDEDw();
2245 dir[idx++] = -synapse->
GetDEDw();
2284 MLP_Line(origin, direction, alpha2);
2290 for (icount = 0; icount < 100; icount++) {
2292 MLP_Line(origin, direction, alpha3);
2309 for (icount = 0; icount < 100; icount++) {
2311 MLP_Line(origin, direction, alpha2);
2329 (err3 - err1) / ((err3 - err2) / (alpha3 - alpha2)
2330 - (err2 - err1) / (alpha2 - alpha1)));
2339 buffer[idx] = neuron->
GetWeight() - origin[idx];
2345 buffer[idx] = synapse->
GetWeight() - origin[idx];
2430 for (
Int_t i = 0; i < els; i++)
2431 delta[i].Assign(buffer[i]);
2486 dedw[idx++][0] = neuron->
GetDEDw();
2491 dedw[idx++][0] = synapse->
GetDEDw();
2494 for (
Int_t i = 0; i < els; i++)
2495 dir[i] = -direction[i][0];
2507#define NeuronSize 2.5
2510 Float_t xStep = 1./(nLayers+1.);
2512 for(layer=0; layer< nLayers-1; layer++) {
2524 Int_t num = atoi(
TString(hidden(beg, end - beg)).Data());
2527 end = hidden.
Index(
":", beg + 1);
2528 if(layer==
cnt) nNeurons_this = num;
2532 if(layer==
cnt) nNeurons_this = num;
2535 if(layer==nLayers-2) {
2537 nNeurons_next =
output.CountChar(
',')+1;
2545 Int_t num = atoi(
TString(hidden(beg, end - beg)).Data());
2548 end = hidden.
Index(
":", beg + 1);
2549 if(layer+1==
cnt) nNeurons_next = num;
2553 if(layer+1==
cnt) nNeurons_next = num;
2555 Float_t yStep_this = 1./(nNeurons_this+1.);
2556 Float_t yStep_next = 1./(nNeurons_next+1.);
2561 maxWeight = maxWeight < theSynapse->
GetWeight() ? theSynapse->
GetWeight() : maxWeight;
2564 for(
Int_t neuron1=0; neuron1<nNeurons_this; neuron1++) {
2565 for(
Int_t neuron2=0; neuron2<nNeurons_next; neuron2++) {
2566 TLine* synapse =
new TLine(xStep*(layer+1),yStep_this*(neuron1+1),xStep*(layer+2),yStep_next*(neuron2+1));
2569 if (!theSynapse)
continue;
2578 for(layer=0; layer< nLayers; layer++) {
2584 else if(layer==nLayers-1) {
2586 nNeurons =
output.CountChar(
',')+1;
2594 Int_t num = atoi(
TString(hidden(beg, end - beg)).Data());
2597 end = hidden.
Index(
":", beg + 1);
2598 if(layer==
cnt) nNeurons = num;
2602 if(layer==
cnt) nNeurons = num;
2604 Float_t yStep = 1./(nNeurons+1.);
2605 for(
Int_t neuron=0; neuron<nNeurons; neuron++) {
2607 m->SetMarkerColor(4);
2615 Float_t yStep = 1./(nrItems+1);
2616 for (
Int_t item = 0; item < nrItems; item++) {
2618 TText* label =
new TText(0.5*xStep,yStep*(item+1),brName.
Data());
2624 yStep=1./(numOutNodes+1);
2625 for (
Int_t outnode=0; outnode<numOutNodes; outnode++) {
2627 if (neuron && neuron->
GetName()) {
TMatrixT< Double_t > TMatrixD
char * Form(const char *fmt,...)
R__EXTERN TSystem * gSystem
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void SetLeftMargin(Float_t leftmargin)
Set Pad left margin in fraction of the pad width.
void SetDecimals(Bool_t dot=kTRUE)
Sets the decimals flag By default, blank characters are stripped, and then the label is correctly ali...
virtual void UnZoom()
Reset first & last bin to the full range.
static TClass * GetClass(const char *name, Bool_t load=kTRUE, Bool_t silent=kFALSE)
Static method returning pointer to TClass of the specified class name.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
A TEventList object is a list of selected events (entries) in a TTree.
virtual Long64_t GetEntry(Int_t index) const
Return value of entry at index in the list.
virtual Int_t GetN() const
A Graph is a graphics object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
1-D histogram with a double per channel (see TH1 documentation)}
virtual void Reset(Option_t *option="")
Reset.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void Draw(Option_t *option="")
Draw this histogram with options.
2-D histogram with a double per channel (see TH1 documentation)}
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Int_t Fill(Double_t)
Invalid Fill method.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
virtual TMatrixTBase< Element > & UnitMatrix()
Make a unit matrix (matrix need not be a square one).
A TMultiGraph is a collection of TGraph (or derived) objects.
TList * GetListOfGraphs() const
virtual void Add(TGraph *graph, Option_t *chopt="")
Add a new graph to the list of graphs.
virtual void Draw(Option_t *chopt="")
Draw this multigraph with its current attributes.
TAxis * GetYaxis()
Get y axis of the graph.
TAxis * GetXaxis()
Get x axis of the graph.
This class describes a neural network.
TTreeFormula * fEventWeight
! formula representing the event weight
void BuildOneHiddenLayer(const TString &sNumNodes, Int_t &layer, Int_t &prevStart, Int_t &prevStop, Bool_t lastLayer)
Builds a hidden layer, updates the number of layers.
void SteepestDir(Double_t *)
Sets the search direction to steepest descent.
void BuildNetwork()
Instantiates the network from the description.
TObjArray fNetwork
Collection of all the neurons in the network.
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
! EventList defining the events in the test dataset
bool GetBFGSH(TMatrixD &, TMatrixD &, TMatrixD &)
Computes the hessian matrix using the BFGS update algorithm.
void BuildHiddenLayers(TString &)
Builds hidden layers.
void BuildFirstLayer(TString &)
Instantiates the neurons in input Inputs are normalised and the type is set to kOff (simple forward o...
void SetTau(Double_t tau)
Sets Tau - used in line search (look at the constructor for the complete description of learning meth...
TMultiLayerPerceptron()
Default constructor.
Double_t GetSumSquareError() const
Error on the output for a given event.
void ConjugateGradientsDir(Double_t *, Double_t)
Sets the search direction to conjugate gradient direction beta should be:
Double_t fTau
! Tau - used in line search - Default=3.
TTree * fData
! pointer to the tree used as datasource
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
void SetGammaDelta(TMatrixD &, TMatrixD &, Double_t *)
Sets the gamma and delta vectors Gamma is computed here, so ComputeDEDw cannot have been called bef...
TEventList * fTraining
! EventList defining the events in the training dataset
TString fStructure
String containing the network structure.
Int_t fReset
! number of epochs between two resets of the search direction to the steepest descent - Default=50
Bool_t LoadWeights(Option_t *filename="")
Loads the weights from a text file conforming to the format defined by DumpWeights.
void MLP_Batch(Double_t *)
One step for the batch (stochastic) method.
TNeuron::ENeuronType fOutType
Type of output neurons.
Double_t fCurrentTreeWeight
! weight of the current tree in a chain
ELearningMethod fLearningMethod
! The Learning Method
Double_t fLastAlpha
! internal parameter used in line search
Int_t fCurrentTree
! index of the current tree in a chain
void Export(Option_t *filename="NNfunction", Option_t *language="C++") const
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ ,...
Double_t fEpsilon
! Epsilon - used in stochastic minimisation - Default=0.
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
TNeuron::ENeuronType GetType() const
void BFGSDir(TMatrixD &, Double_t *)
Computes the direction for the BFGS algorithm as the product between the Hessian estimate (bfgsh) and...
void SetTestDataSet(TEventList *test)
Sets the Test dataset.
Bool_t fTrainingOwner
! internal flag whether one has to delete fTraining or not
void SetLearningMethod(TMultiLayerPerceptron::ELearningMethod method)
Sets the learning method.
void SetTrainingDataSet(TEventList *train)
Sets the Training dataset.
void BuildLastLayer(TString &, Int_t)
Builds the output layer Neurons are linear combinations of input, by default.
Double_t fDelta
! Delta - used in stochastic minimisation - Default=0.
TTreeFormulaManager * fManager
! TTreeFormulaManager for the weight and neurons
void Randomize() const
Randomize the weights.
Bool_t LineSearch(Double_t *, Double_t *)
Search along the line defined by direction.
virtual void Draw(Option_t *option="")
Draws the network structure.
void ExpandStructure()
Expand the structure of the first layer.
Double_t fEta
! Eta - used in stochastic minimisation - Default=0.1
Double_t GetError(Int_t event) const
Error on the output for a given event.
Double_t fEtaDecay
! EtaDecay - Eta *= EtaDecay at each epoch - Default=1.
void SetEtaDecay(Double_t ed)
Sets EtaDecay - Eta *= EtaDecay at each epoch (look at the constructor for the complete description o...
void AttachData()
Connects the TTree to Neurons in input and output layers.
void SetData(TTree *)
Set the data source.
void SetEventWeight(const char *)
Set the event weight.
Bool_t DumpWeights(Option_t *filename="-") const
Dumps the weights to a text file.
TString fWeight
String containing the event weight.
void SetDelta(Double_t delta)
Sets Delta - used in stochastic minimisation (look at the constructor for the complete description of...
Double_t GetCrossEntropy() const
Cross entropy error for a softmax output neuron, for a given event.
void SetReset(Int_t reset)
Sets number of epochs between two resets of the search direction to the steepest descent.
Bool_t fTestOwner
! internal flag whether one has to delete fTest or not
void Shuffle(Int_t *, Int_t) const
Shuffle the Int_t index[n] in input.
virtual ~TMultiLayerPerceptron()
Destructor.
Double_t DerivDir(Double_t *)
scalar product between gradient and direction = derivative along direction
void MLP_Stochastic(Double_t *)
One step for the stochastic method buffer should contain the previous dw vector and will be updated.
TObjArray fSynapses
Collection of all the synapses in the network.
void MLP_Line(Double_t *, Double_t *, Double_t)
Sets the weights to a point along a line Weights are set to [origin + (dist * dir)].
TNeuron::ENeuronType fType
Type of hidden neurons.
TObjArray fLastLayer
Collection of the output neurons; subset of fNetwork.
TString fextD
String containing the derivative name.
void ComputeDEDw() const
Compute the DEDw = sum on all training events of dedw for each weight normalized by the number of eve...
Double_t GetCrossEntropyBinary() const
Cross entropy error for sigmoid output neurons, for a given event.
void DrawResult(Int_t index=0, Option_t *option="test") const
Draws the neural net output It produces an histogram with the output for the two datasets.
void SetEta(Double_t eta)
Sets Eta - used in stochastic minimisation (look at the constructor for the complete description of l...
TObjArray fFirstLayer
Collection of the input neurons; subset of fNetwork.
void GetEntry(Int_t) const
Load an entry into the network.
void SetEpsilon(Double_t eps)
Sets Epsilon - used in stochastic minimisation (look at the constructor for the complete description ...
TString fextF
String containing the function name.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual const char * GetName() const
Returns name of object.
This class describes an elementary neuron, which is the basic element for a Neural Network.
Double_t GetWeight() const
void SetWeight(Double_t w)
Sets the neuron weight to w.
Double_t GetValue() const
Computes the output using the appropriate function and all the weighted inputs, or uses the branch as...
void SetDEDw(Double_t in)
Sets the derivative of the total error wrt the neuron weight.
Double_t GetDeDw() const
Computes the derivative of the error wrt the neuron weight.
Double_t GetBranch() const
Returns the formula value.
TNeuron * GetInLayer(Int_t n) const
Double_t GetError() const
Computes the error for output neurons.
TTreeFormula * UseBranch(TTree *, const char *)
Sets a formula that can be used to make the neuron an input.
TSynapse * GetPre(Int_t n) const
void ForceExternalValue(Double_t value)
Uses the branch type to force an external value.
Double_t GetTarget() const
Computes the normalized target pattern for output neurons.
const Double_t * GetNormalisation() const
ENeuronType GetType() const
Returns the neuron type.
void SetNewEvent() const
Inform the neuron that inputs of the network have changed, so that the buffered values have to be rec...
void SetNormalisation(Double_t mean, Double_t RMS)
Sets the normalization variables.
void AddInLayer(TNeuron *)
Tells a neuron which neurons form its layer (including itself).
Iterator of object array.
TObject * Next()
Return next object in array. Returns 0 when no more objects in array.
Int_t GetEntriesFast() const
virtual void AddLast(TObject *obj)
Add object in the next empty slot in the array.
TObject * UncheckedAt(Int_t i) const
TIterator * MakeIterator(Bool_t dir=kIterForward) const
Returns an array iterator.
Int_t GetLast() const
Return index of last object in array.
TObject * At(Int_t idx) const
Collectable string class.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Random number generator class based on M.
virtual Double_t Rndm()
Machine independent random number generator.
Regular expression class.
void ToLower()
Change string to lower-case.
Bool_t EndsWith(const char *pat, ECaseCompare cmp=kExact) const
Return true if string ends with the specified string.
Ssiz_t First(char c) const
Find first occurrence of a character c.
const char * Data() const
Bool_t IsAlpha() const
Returns true if all characters in string are alphabetic.
Ssiz_t Last(char c) const
Find last occurrence of a character c.
void ToUpper()
Change string to upper case.
TObjArray * Tokenize(const TString &delim) const
This function is used to isolate sequential tokens in a TString.
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Bool_t IsAlnum() const
Returns true if all characters in string are alphanumeric.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
This is a simple weighted bidirectional connection between two neurons.
Double_t GetDeDw() const
Computes the derivative of the error wrt the synapse weight.
void SetWeight(Double_t w)
Sets the weight of the synapse.
Double_t GetWeight() const
void SetDEDw(Double_t in)
Sets the derivative of the total error wrt the synapse weight.
virtual int Load(const char *module, const char *entry="", Bool_t system=kFALSE)
Load a shared library.
virtual Bool_t ProcessEvents()
Process pending events (GUI, timers, sockets).
Base class for several text objects.
The TTimeStamp encapsulates seconds and ns since EPOCH.
A TTree represents a columnar dataset.
virtual Double_t GetWeight() const
virtual Long64_t GetEntries() const
virtual Int_t GetEntry(Long64_t entry=0, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
virtual Int_t GetTreeNumber() const
virtual void Draw(Option_t *opt)
Default Draw method for all objects.
TVirtualPad is an abstract base class for the Pad and Canvas classes.
virtual void Modified(Bool_t flag=1)=0
double beta(double x, double y)
Calculates the beta function.
double dist(Rotation3D const &r1, Rotation3D const &r2)
Double_t Sqrt(Double_t x)
static void output(int code)