ROOT
Version v6.32
master
v6.34
v6.30
v6.28
v6.26
v6.24
v6.22
v6.20
v6.18
v6.16
v6.14
v6.12
v6.10
v6.08
v6.06
Reference Guide
▼
ROOT
ROOT Reference Documentation
Tutorials
►
Functional Parts
►
Namespaces
►
All Classes
▼
Files
▼
File List
►
bindings
►
core
►
documentation
►
geom
►
graf2d
►
graf3d
►
gui
►
hist
►
html
►
io
►
main
►
math
►
montecarlo
►
net
►
proof
►
roofit
►
sql
▼
tmva
doc
►
pymva
►
rmva
►
sofie
►
sofie_parsers
▼
tmva
▼
inc
▼
TMVA
►
DNN
BDTEventWrapper.h
BinarySearchTree.h
BinarySearchTreeNode.h
►
BinaryTree.h
CCPruner.h
►
CCTreeWrapper.h
►
Classification.h
►
ClassifierFactory.h
ClassInfo.h
►
Config.h
►
Configurable.h
ConvergenceTest.h
CostComplexityPruneTool.h
CrossEntropy.h
►
CrossValidation.h
►
CvSplit.h
►
DataInputHandler.h
►
DataLoader.h
DataSet.h
►
DataSetFactory.h
DataSetInfo.h
DataSetManager.h
DecisionTree.h
►
DecisionTreeNode.h
Envelope.h
►
Event.h
►
Executor.h
ExpectedErrorPruneTool.h
Factory.h
FitterBase.h
GeneticAlgorithm.h
GeneticFitter.h
►
GeneticGenes.h
GeneticPopulation.h
GeneticRange.h
GiniIndex.h
GiniIndexWithLaplace.h
HyperParameterOptimisation.h
IFitterTarget.h
IMethod.h
Interval.h
►
IPruneTool.h
KDEKernel.h
►
LDA.h
LogInterval.h
►
LossFunction.h
MCFitter.h
MethodANNBase.h
MethodBase.h
MethodBayesClassifier.h
MethodBDT.h
MethodBoost.h
MethodCategory.h
MethodCFMlpANN.h
MethodCFMlpANN_def.h
►
MethodCFMlpANN_Utils.h
MethodCompositeBase.h
MethodCrossValidation.h
MethodCuts.h
►
MethodDL.h
►
MethodDNN.h
MethodDT.h
MethodFDA.h
MethodFisher.h
MethodHMatrix.h
MethodKNN.h
MethodLD.h
MethodLikelihood.h
►
MethodMLP.h
MethodPDEFoam.h
MethodPDERS.h
MethodRuleFit.h
MethodSVM.h
MethodTMlpANN.h
MinuitFitter.h
MinuitWrapper.h
MisClassificationError.h
►
ModulekNN.h
►
Monitoring.h
►
MsgLogger.h
►
NeuralNet.h
►
NeuralNet.icc
►
Node.h
►
NodekNN.h
OptimizeConfigParameters.h
►
Option.h
►
OptionMap.h
►
Pattern.h
PDEFoam.h
PDEFoamCell.h
PDEFoamDecisionTree.h
PDEFoamDecisionTreeDensity.h
PDEFoamDensityBase.h
PDEFoamDiscriminant.h
PDEFoamDiscriminantDensity.h
PDEFoamEvent.h
PDEFoamEventDensity.h
PDEFoamKernelBase.h
PDEFoamKernelGauss.h
PDEFoamKernelLinN.h
PDEFoamKernelTrivial.h
PDEFoamMultiTarget.h
PDEFoamTarget.h
PDEFoamTargetDensity.h
PDEFoamVect.h
►
PDF.h
►
QuickMVAProbEstimator.h
►
Ranking.h
►
RBatchGenerator.hxx
►
RBatchLoader.hxx
►
RBDT.hxx
►
RChunkLoader.hxx
Reader.h
RegressionVariance.h
Results.h
ResultsClassification.h
ResultsMulticlass.h
ResultsRegression.h
►
RInferenceUtils.hxx
ROCCalc.h
ROCCurve.h
RootFinder.h
►
RReader.hxx
►
RSofieReader.hxx
►
RStandardScaler.hxx
►
RTensor.hxx
►
RTensorUtils.hxx
►
Rule.h
RuleCut.h
►
RuleEnsemble.h
RuleFit.h
►
RuleFitAPI.h
►
RuleFitParams.h
SdivSqrtSplusB.h
SeparationBase.h
SimulatedAnnealing.h
SimulatedAnnealingFitter.h
SVEvent.h
SVKernelFunction.h
SVKernelMatrix.h
SVWorkingSet.h
TActivation.h
TActivationChooser.h
TActivationIdentity.h
TActivationRadial.h
TActivationReLU.h
TActivationSigmoid.h
TActivationTanh.h
Timer.h
►
TNeuron.h
TNeuronInput.h
TNeuronInputAbs.h
TNeuronInputChooser.h
TNeuronInputSqSum.h
TNeuronInputSum.h
►
Tools.h
TrainingHistory.h
►
TransformationHandler.h
TSpline1.h
TSpline2.h
►
TSynapse.h
Types.h
VariableDecorrTransform.h
►
VariableGaussTransform.h
VariableIdentityTransform.h
VariableImportance.h
VariableInfo.h
VariableNormalizeTransform.h
VariablePCATransform.h
VariableRearrangeTransform.h
►
VariableTransform.h
VariableTransformBase.h
►
VarTransformHandler.h
►
Version.h
Volume.h
►
src
►
tmvagui
►
tree
►
tutorials
►
v6-32-00-patches
►
File Members
Release Notes
•
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Properties
Friends
Macros
Modules
Pages
Loading...
Searching...
No Matches
SVKernelFunction.h
Go to the documentation of this file.
1
// @(#)root/tmva $Id$
2
// Author: Andrzej Zemla
3
4
/**********************************************************************************
5
* Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6
* Package: TMVA *
7
* Class : SVKernelFunction *
8
* *
9
* *
10
* Description: *
11
* Kernel for Support Vector Machine *
12
* *
13
* Authors (alphabetical): *
14
* Marcin Wolter <Marcin.Wolter@cern.ch> - IFJ PAN, Krakow, Poland *
15
* Andrzej Zemla <azemla@cern.ch> - IFJ PAN, Krakow, Poland *
16
* (IFJ PAN: Henryk Niewodniczanski Inst. Nucl. Physics, Krakow, Poland) *
17
* *
18
* Copyright (c) 2005: *
19
* CERN, Switzerland *
20
* MPI-K Heidelberg, Germany *
21
* PAN, Krakow, Poland *
22
* *
23
* Redistribution and use in source and binary forms, with or without *
24
* modification, are permitted according to the terms listed in LICENSE *
25
* (see tmva/doc/LICENSE) *
26
**********************************************************************************/
27
28
#ifndef ROOT_TMVA_SVKernelFunction
29
#define ROOT_TMVA_SVKernelFunction
30
31
#include "
RtypesCore.h
"
32
#include <vector>
33
34
namespace
TMVA
{
35
36
class
SVEvent;
37
class
SVKernelFunction
{
38
39
public
:
40
41
enum
EKernelType
{
kLinear
,
kRBF
,
kPolynomial
,
kSigmoidal
,
kMultiGauss
,
kProd
,
kSum
};
42
43
SVKernelFunction
();
44
SVKernelFunction
(
Float_t
);
45
SVKernelFunction
( EKernelType,
Float_t
,
Float_t
=0);
46
SVKernelFunction
( std::vector<float> params );
47
SVKernelFunction
(EKernelType k, std::vector<EKernelType>
kernels
, std::vector<Float_t>
gammas
,
Float_t
gamma,
Float_t
order,
Float_t
theta);
48
~SVKernelFunction
();
49
50
Float_t
Evaluate
(
SVEvent
*
ev1
,
SVEvent
*
ev2
);
51
52
void
setCompatibilityParams
(EKernelType k,
UInt_t
order,
Float_t
theta,
Float_t
kappa);
53
54
private
:
55
56
Float_t
fGamma
;
// documentation
57
58
// vector of gammas for multidimensional gaussian
59
std::vector<Float_t>
fmGamma
;
60
61
// kernel, order, theta, and kappa are for backward compatibility
62
EKernelType
fKernel
;
63
UInt_t
fOrder
;
64
Float_t
fTheta
;
65
Float_t
fKappa
;
66
67
std::vector<EKernelType>
fKernelsList
;
68
};
69
}
70
71
#endif
RtypesCore.h
UInt_t
unsigned int UInt_t
Definition
RtypesCore.h:46
Float_t
float Float_t
Definition
RtypesCore.h:57
ROOT::Detail::TRangeCast
Definition
TCollection.h:311
TMVA::SVEvent
Event class for Support Vector Machine.
Definition
SVEvent.h:40
TMVA::SVKernelFunction
Kernel for Support Vector Machine.
Definition
SVKernelFunction.h:37
TMVA::SVKernelFunction::fKernelsList
std::vector< EKernelType > fKernelsList
Definition
SVKernelFunction.h:67
TMVA::SVKernelFunction::SVKernelFunction
SVKernelFunction()
constructor
Definition
SVKernelFunction.cxx:47
TMVA::SVKernelFunction::fmGamma
std::vector< Float_t > fmGamma
Definition
SVKernelFunction.h:59
TMVA::SVKernelFunction::fTheta
Float_t fTheta
Definition
SVKernelFunction.h:64
TMVA::SVKernelFunction::fOrder
UInt_t fOrder
Definition
SVKernelFunction.h:63
TMVA::SVKernelFunction::setCompatibilityParams
void setCompatibilityParams(EKernelType k, UInt_t order, Float_t theta, Float_t kappa)
set old options for compatibility mode
Definition
SVKernelFunction.cxx:124
TMVA::SVKernelFunction::~SVKernelFunction
~SVKernelFunction()
destructor
Definition
SVKernelFunction.cxx:115
TMVA::SVKernelFunction::fKernel
EKernelType fKernel
Definition
SVKernelFunction.h:62
TMVA::SVKernelFunction::Evaluate
Float_t Evaluate(SVEvent *ev1, SVEvent *ev2)
Definition
SVKernelFunction.cxx:133
TMVA::SVKernelFunction::fKappa
Float_t fKappa
Definition
SVKernelFunction.h:65
TMVA::SVKernelFunction::fGamma
Float_t fGamma
Definition
SVKernelFunction.h:56
TMVA::SVKernelFunction::EKernelType
EKernelType
Definition
SVKernelFunction.h:41
TMVA::SVKernelFunction::kPolynomial
@ kPolynomial
Definition
SVKernelFunction.h:41
TMVA::SVKernelFunction::kLinear
@ kLinear
Definition
SVKernelFunction.h:41
TMVA::SVKernelFunction::kProd
@ kProd
Definition
SVKernelFunction.h:41
TMVA::SVKernelFunction::kMultiGauss
@ kMultiGauss
Definition
SVKernelFunction.h:41
TMVA::SVKernelFunction::kSigmoidal
@ kSigmoidal
Definition
SVKernelFunction.h:41
TMVA::SVKernelFunction::kSum
@ kSum
Definition
SVKernelFunction.h:41
TMVA::SVKernelFunction::kRBF
@ kRBF
Definition
SVKernelFunction.h:41
unsigned int
TMVA
create variable transformations
Definition
GeneticMinimizer.h:22
tmva
tmva
inc
TMVA
SVKernelFunction.h
ROOT v6-32 - Reference Guide Generated on Sat Apr 5 2025 15:14:42 (GVA Time) using Doxygen 1.10.0