|
template<typename ItValue , typename Fnc > |
void | TMVA::DNN::applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc) |
| apply the activation functions
|
|
template<typename ItValue , typename Fnc , typename InvFnc , typename ItGradient > |
void | TMVA::DNN::applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc, InvFnc invFnc, ItGradient itGradient) |
| apply the activation functions and compute the gradient
|
|
template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItTarget , typename ItDrop > |
void | TMVA::DNN::applyWeights (ItSource itSourceBegin, ItSource itSourceEnd, ItWeight itWeight, ItTarget itTargetBegin, ItTarget itTargetEnd, ItDrop itDrop) |
| apply weights using drop-out; for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true"
|
|
template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItPrev , typename ItDrop > |
void | TMVA::DNN::applyWeightsBackwards (ItSource itCurrBegin, ItSource itCurrEnd, ItWeight itWeight, ItPrev itPrevBegin, ItPrev itPrevEnd, ItDrop itDrop) |
| apply weights backwards (for backprop); for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true"
|
|
template<typename LAYERDATA > |
void | TMVA::DNN::backward (LAYERDATA &prevLayerData, LAYERDATA &currLayerData) |
| backward application of the weights (back-propagation of the error)
|
|
template<EnumRegularization Regularization> |
double | TMVA::DNN::computeRegularization (double weight, const double &factorWeightDecay) |
| compute the regularization (L1, L2)
|
|
template<> |
double | TMVA::DNN::computeRegularization< EnumRegularization::L1 > (double weight, const double &factorWeightDecay) |
|
template<> |
double | TMVA::DNN::computeRegularization< EnumRegularization::L2 > (double weight, const double &factorWeightDecay) |
|
template<typename ItProbability , typename ItTruth , typename ItDelta , typename ItInvActFnc > |
double | TMVA::DNN::crossEntropy (ItProbability itProbabilityBegin, ItProbability itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) |
| cross entropy error function
|
|
template<typename LAYERDATA > |
void | TMVA::DNN::forward (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData) |
| apply the weights (and functions) in forward direction of the DNN
|
|
template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc > |
double | TMVA::DNN::softMaxCrossEntropy (ItOutput itProbabilityBegin, ItOutput itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) |
| soft-max-cross-entropy error function (for mutual exclusive cross-entropy)
|
|
template<typename ItOutput , typename ItTruth , typename ItDelta , typename InvFnc > |
double | TMVA::DNN::sumOfSquares (ItOutput itOutputBegin, ItOutput itOutputEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, InvFnc invFnc, double patternWeight) |
| sum of squares error function
|
|
template<typename Container , typename T > |
void | TMVA::DNN::uniformDouble (Container &container, T maxValue) |
|
template<typename T > |
T | TMVA::DNN::uniformFromTo (T from, T to) |
|
template<typename LAYERDATA > |
void | TMVA::DNN::update (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData, double factorWeightDecay, EnumRegularization regularization) |
| update the node values
|
|
template<typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient > |
void | TMVA::DNN::update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient) |
| update the gradients
|
|
template<EnumRegularization Regularization, typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient , typename ItWeight > |
void | TMVA::DNN::update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient, ItWeight itWeight, double weightDecay) |
| update the gradients, using regularization
|
|
template<typename ItWeight > |
double | TMVA::DNN::weightDecay (double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization) |
| compute the weight decay for regularization (L1 or L2)
|
|