| 
| template<typename ItValue , typename Fnc >  | 
| void  | TMVA::DNN::applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc) | 
|   | apply the activation functions  
  | 
|   | 
| template<typename ItValue , typename Fnc , typename InvFnc , typename ItGradient >  | 
| void  | TMVA::DNN::applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc, InvFnc invFnc, ItGradient itGradient) | 
|   | apply the activation functions and compute the gradient  
  | 
|   | 
| template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItTarget , typename ItDrop >  | 
| void  | TMVA::DNN::applyWeights (ItSource itSourceBegin, ItSource itSourceEnd, ItWeight itWeight, ItTarget itTargetBegin, ItTarget itTargetEnd, ItDrop itDrop) | 
|   | apply weights using drop-out; for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true"  
  | 
|   | 
| template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItPrev , typename ItDrop >  | 
| void  | TMVA::DNN::applyWeightsBackwards (ItSource itCurrBegin, ItSource itCurrEnd, ItWeight itWeight, ItPrev itPrevBegin, ItPrev itPrevEnd, ItDrop itDrop) | 
|   | apply weights backwards (for backprop); for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true"  
  | 
|   | 
| template<typename LAYERDATA >  | 
| void  | TMVA::DNN::backward (LAYERDATA &prevLayerData, LAYERDATA &currLayerData) | 
|   | backward application of the weights (back-propagation of the error)  
  | 
|   | 
| template<EnumRegularization Regularization>  | 
| double  | TMVA::DNN::computeRegularization (double weight, const double &factorWeightDecay) | 
|   | compute the regularization (L1, L2)  
  | 
|   | 
| template<>  | 
| double  | TMVA::DNN::computeRegularization< EnumRegularization::L1 > (double weight, const double &factorWeightDecay) | 
|   | 
| template<>  | 
| double  | TMVA::DNN::computeRegularization< EnumRegularization::L2 > (double weight, const double &factorWeightDecay) | 
|   | 
| template<typename ItProbability , typename ItTruth , typename ItDelta , typename ItInvActFnc >  | 
| double  | TMVA::DNN::crossEntropy (ItProbability itProbabilityBegin, ItProbability itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) | 
|   | cross entropy error function  
  | 
|   | 
| template<typename LAYERDATA >  | 
| void  | TMVA::DNN::forward (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData) | 
|   | apply the weights (and functions) in forward direction of the DNN  
  | 
|   | 
| template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc >  | 
| double  | TMVA::DNN::softMaxCrossEntropy (ItOutput itProbabilityBegin, ItOutput itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) | 
|   | soft-max-cross-entropy error function (for mutual exclusive cross-entropy)  
  | 
|   | 
| template<typename ItOutput , typename ItTruth , typename ItDelta , typename InvFnc >  | 
| double  | TMVA::DNN::sumOfSquares (ItOutput itOutputBegin, ItOutput itOutputEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, InvFnc invFnc, double patternWeight) | 
|   | sum of squares error function  
  | 
|   | 
| template<typename Container , typename T >  | 
| void  | TMVA::DNN::uniformDouble (Container &container, T maxValue) | 
|   | 
| template<typename T >  | 
| T  | TMVA::DNN::uniformFromTo (T from, T to) | 
|   | 
| template<typename LAYERDATA >  | 
| void  | TMVA::DNN::update (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData, double factorWeightDecay, EnumRegularization regularization) | 
|   | update the node values  
  | 
|   | 
| template<typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient >  | 
| void  | TMVA::DNN::update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient) | 
|   | update the gradients  
  | 
|   | 
| template<EnumRegularization Regularization, typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient , typename ItWeight >  | 
| void  | TMVA::DNN::update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient, ItWeight itWeight, double weightDecay) | 
|   | update the gradients, using regularization  
  | 
|   | 
| template<typename ItWeight >  | 
| double  | TMVA::DNN::weightDecay (double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization) | 
|   | compute the weight decay for regularization (L1 or L2)  
  | 
|   |