31#ifndef ROOT_TMVA_LossFunction 
   32#define ROOT_TMVA_LossFunction 
  134      virtual void SetTargets(std::vector<const TMVA::Event*>& 
evs, std::map< const TMVA::Event*, LossFunctionEventInfo >& 
evinfomap) = 0;
 
 
  161      void Init(std::vector<LossFunctionEventInfo>& 
evs);
 
 
  188      void SetTargets(std::vector<const TMVA::Event*>& 
evs, std::map< const TMVA::Event*, LossFunctionEventInfo >& 
evinfomap);
 
 
  230      void SetTargets(std::vector<const TMVA::Event*>& 
evs, std::map< const TMVA::Event*, LossFunctionEventInfo >& 
evinfomap);
 
 
  269      void SetTargets(std::vector<const TMVA::Event*>& 
evs, std::map< const TMVA::Event*, LossFunctionEventInfo >& 
evinfomap);
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Absolute Deviation BDT Loss Function.
 
~AbsoluteDeviationLossFunctionBDT()
 
AbsoluteDeviationLossFunctionBDT()
 
Double_t Fit(std::vector< LossFunctionEventInfo > &evs)
absolute deviation BDT, determine the fit value for the terminal node based upon the events in the te...
 
void SetTargets(std::vector< const TMVA::Event * > &evs, std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap)
absolute deviation BDT, set the targets for a collection of events
 
void Init(std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap, std::vector< double > &boostWeights)
absolute deviation BDT, initialize the targets and prepare for the regression
 
Double_t Target(LossFunctionEventInfo &e)
absolute deviation BDT, set the target for a single event
 
Absolute Deviation Loss Function.
 
Double_t CalculateNetLoss(std::vector< LossFunctionEventInfo > &evs)
absolute deviation, determine the net loss for a collection of events
 
~AbsoluteDeviationLossFunction()
 
Double_t CalculateMeanLoss(std::vector< LossFunctionEventInfo > &evs)
absolute deviation, determine the mean loss for a collection of events
 
Double_t CalculateLoss(LossFunctionEventInfo &e)
absolute deviation, determine the loss for a single event
 
AbsoluteDeviationLossFunction()
 
Double_t Target(LossFunctionEventInfo &e)
huber BDT, set the target for a single event
 
Double_t Fit(std::vector< LossFunctionEventInfo > &evs)
huber BDT, determine the fit value for the terminal node based upon the events in the terminal node
 
void Init(std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap, std::vector< double > &boostWeights)
huber BDT, initialize the targets and prepare for the regression
 
void SetTargets(std::vector< const TMVA::Event * > &evs, std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap)
huber BDT, set the targets for a collection of events
 
HuberLossFunctionBDT(Double_t quantile)
 
HuberLossFunction()
huber constructor
 
void SetSumOfWeights(std::vector< LossFunctionEventInfo > &evs)
huber, set the sum of weights given a collection of events
 
void SetTransitionPoint(std::vector< LossFunctionEventInfo > &evs)
huber, determine the transition point using the values for fQuantile and fSumOfWeights which presumab...
 
Double_t CalculateNetLoss(std::vector< LossFunctionEventInfo > &evs)
huber, determine the net loss for a collection of events
 
Double_t CalculateLoss(LossFunctionEventInfo &e)
huber, determine the loss for a single event
 
~HuberLossFunction()
huber destructor
 
Double_t fTransitionPoint
 
Double_t CalculateSumOfWeights(const std::vector< LossFunctionEventInfo > &evs)
huber, calculate the sum of weights for the events in the vector
 
Double_t CalculateMeanLoss(std::vector< LossFunctionEventInfo > &evs)
huber, determine the mean loss for a collection of events
 
void Init(std::vector< LossFunctionEventInfo > &evs)
figure out the residual that determines the separation between the "core" and the "tails" of the resi...
 
Double_t CalculateQuantile(std::vector< LossFunctionEventInfo > &evs, Double_t whichQuantile, Double_t sumOfWeights, bool abs)
huber, determine the quantile for a given input
 
Least Squares BDT Loss Function.
 
void SetTargets(std::vector< const TMVA::Event * > &evs, std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap)
least squares BDT, set the targets for a collection of events
 
LeastSquaresLossFunctionBDT()
 
Double_t Target(LossFunctionEventInfo &e)
least squares BDT, set the target for a single event
 
Double_t Fit(std::vector< LossFunctionEventInfo > &evs)
huber BDT, determine the fit value for the terminal node based upon the events in the terminal node
 
void Init(std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap, std::vector< double > &boostWeights)
least squares BDT, initialize the targets and prepare for the regression
 
~LeastSquaresLossFunctionBDT()
 
Least Squares Loss Function.
 
Double_t CalculateNetLoss(std::vector< LossFunctionEventInfo > &evs)
least squares , determine the net loss for a collection of events
 
LeastSquaresLossFunction()
 
Double_t CalculateMeanLoss(std::vector< LossFunctionEventInfo > &evs)
least squares , determine the mean loss for a collection of events
 
Double_t CalculateLoss(LossFunctionEventInfo &e)
least squares , determine the loss for a single event
 
~LeastSquaresLossFunction()
 
virtual Double_t Fit(std::vector< LossFunctionEventInfo > &evs)=0
 
virtual void SetTargets(std::vector< const TMVA::Event * > &evs, std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap)=0
 
virtual void Init(std::map< const TMVA::Event *, LossFunctionEventInfo > &evinfomap, std::vector< double > &boostWeights)=0
 
virtual ~LossFunctionBDT()
 
virtual Double_t Target(LossFunctionEventInfo &e)=0
 
LossFunctionEventInfo(Double_t trueValue_, Double_t predictedValue_, Double_t weight_)
 
virtual Double_t CalculateMeanLoss(std::vector< LossFunctionEventInfo > &evs)=0
 
virtual Double_t CalculateNetLoss(std::vector< LossFunctionEventInfo > &evs)=0
 
virtual Double_t CalculateLoss(LossFunctionEventInfo &e)=0
 
create variable transformations