Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf610_visualerror.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Likelihood and minimization: visualization of errors from a covariance matrix

#include "RooRealVar.h"
#include "RooDataHist.h"
#include "RooGaussian.h"
#include "RooAddPdf.h"
#include "RooPlot.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "TAxis.h"
using namespace RooFit;
{
// S e t u p e x a m p l e f i t
// ---------------------------------------
// Create sum of two Gaussians pdf with factory
RooRealVar x("x", "x", -10, 10);
RooRealVar m("m", "m", 0, -10, 10);
RooRealVar s("s", "s", 2, 1, 50);
RooGaussian sig("sig", "sig", x, m, s);
RooRealVar m2("m2", "m2", -1, -10, 10);
RooRealVar s2("s2", "s2", 6, 1, 50);
RooGaussian bkg("bkg", "bkg", x, m2, s2);
RooRealVar fsig("fsig", "fsig", 0.33, 0, 1);
RooAddPdf model("model", "model", RooArgList(sig, bkg), fsig);
// Create binned dataset
x.setBins(25);
std::unique_ptr<RooAbsData> d{model.generateBinned(x, 1000)};
// Perform fit and save fit result
std::unique_ptr<RooFitResult> r{model.fitTo(*d, Save(), PrintLevel(-1))};
// V i s u a l i z e f i t e r r o r
// -------------------------------------
// Make plot frame
RooPlot *frame = x.frame(Bins(40), Title("P.d.f with visualized 1-sigma error band"));
d->plotOn(frame);
// Visualize 1-sigma error encoded in fit result 'r' as orange band using linear error propagation
// This results in an error band that is by construction symmetric
//
// The linear error is calculated as
// error(x) = Z* F_a(x) * Corr(a,a') F_a'(x)
//
// where F_a(x) = [ f(x,a+da) - f(x,a-da) ] / 2,
//
// with f(x) = the plotted curve
// 'da' = error taken from the fit result
// Corr(a,a') = the correlation matrix from the fit result
// Z = requested significance 'Z sigma band'
//
// The linear method is fast (required 2*N evaluations of the curve, where N is the number of parameters),
// but may not be accurate in the presence of strong correlations (~>0.9) and at Z>2 due to linear and
// Gaussian approximations made
//
model.plotOn(frame, VisualizeError(*r, 1), FillColor(kOrange));
// Calculate error using sampling method and visualize as dashed red line.
//
// In this method a number of curves is calculated with variations of the parameter values, as sampled
// from a multi-variate Gaussian pdf that is constructed from the fit results covariance matrix.
// The error(x) is determined by calculating a central interval that capture N% of the variations
// for each value of x, where N% is controlled by Z (i.e. Z=1 gives N=68%). The number of sampling curves
// is chosen to be such that at least 100 curves are expected to be outside the N% interval, and is minimally
// 100 (e.g. Z=1->Ncurve=356, Z=2->Ncurve=2156)) Intervals from the sampling method can be asymmetric,
// and may perform better in the presence of strong correlations, but may take (much) longer to calculate
model.plotOn(frame, VisualizeError(*r, 1, false), DrawOption("L"), LineWidth(2), LineColor(kRed));
// Perform the same type of error visualization on the background component only.
// The VisualizeError() option can generally applied to _any_ kind of plot (components, asymmetries, efficiencies
// etc..)
model.plotOn(frame, VisualizeError(*r, 1), FillColor(kOrange), Components("bkg"));
model.plotOn(frame, VisualizeError(*r, 1, false), DrawOption("L"), LineWidth(2), LineColor(kRed), Components("bkg"),
// Overlay central value
model.plotOn(frame);
model.plotOn(frame, Components("bkg"), LineStyle(kDashed));
d->plotOn(frame);
frame->SetMinimum(0);
// V i s u a l i z e p a r t i a l f i t e r r o r
// ------------------------------------------------------
// Make plot frame
RooPlot *frame2 = x.frame(Bins(40), Title("Visualization of 2-sigma partial error from (m,m2)"));
// Visualize partial error. For partial error visualization the covariance matrix is first reduced as follows
// ___ -1
// Vred = V22 = V11 - V12 * V22 * V21
//
// Where V11,V12,V21,V22 represent a block decomposition of the covariance matrix into observables that
// are propagated (labeled by index '1') and that are not propagated (labeled by index '2'), and V22bar
// is the Shur complement of V22, calculated as shown above
//
// (Note that Vred is _not_ a simple sub-matrix of V)
// Propagate partial error due to shape parameters (m,m2) using linear and sampling method
model.plotOn(frame2, VisualizeError(*r, RooArgSet(m, m2), 2), FillColor(kCyan));
model.plotOn(frame2, Components("bkg"), VisualizeError(*r, RooArgSet(m, m2), 2), FillColor(kCyan));
model.plotOn(frame2);
model.plotOn(frame2, Components("bkg"), LineStyle(kDashed));
frame2->SetMinimum(0);
// Make plot frame
RooPlot *frame3 = x.frame(Bins(40), Title("Visualization of 2-sigma partial error from (s,s2)"));
// Propagate partial error due to yield parameter using linear and sampling method
model.plotOn(frame3, VisualizeError(*r, RooArgSet(s, s2), 2), FillColor(kGreen));
model.plotOn(frame3, Components("bkg"), VisualizeError(*r, RooArgSet(s, s2), 2), FillColor(kGreen));
model.plotOn(frame3);
model.plotOn(frame3, Components("bkg"), LineStyle(kDashed));
frame3->SetMinimum(0);
// Make plot frame
RooPlot *frame4 = x.frame(Bins(40), Title("Visualization of 2-sigma partial error from fsig"));
// Propagate partial error due to yield parameter using linear and sampling method
model.plotOn(frame4, VisualizeError(*r, RooArgSet(fsig), 2), FillColor(kMagenta));
model.plotOn(frame4, Components("bkg"), VisualizeError(*r, RooArgSet(fsig), 2), FillColor(kMagenta));
model.plotOn(frame4);
model.plotOn(frame4, Components("bkg"), LineStyle(kDashed));
frame4->SetMinimum(0);
TCanvas *c = new TCanvas("rf610_visualerror", "rf610_visualerror", 800, 800);
c->Divide(2, 2);
c->cd(1);
gPad->SetLeftMargin(0.15);
frame->GetYaxis()->SetTitleOffset(1.4);
frame->Draw();
c->cd(2);
gPad->SetLeftMargin(0.15);
frame2->GetYaxis()->SetTitleOffset(1.6);
frame2->Draw();
c->cd(3);
gPad->SetLeftMargin(0.15);
frame3->GetYaxis()->SetTitleOffset(1.6);
frame3->Draw();
c->cd(4);
gPad->SetLeftMargin(0.15);
frame4->GetYaxis()->SetTitleOffset(1.6);
frame4->Draw();
}
#define d(i)
Definition RSha256.hxx:102
#define c(i)
Definition RSha256.hxx:101
@ kRed
Definition Rtypes.h:66
@ kOrange
Definition Rtypes.h:67
@ kGreen
Definition Rtypes.h:66
@ kMagenta
Definition Rtypes.h:66
@ kCyan
Definition Rtypes.h:66
@ kDashed
Definition TAttLine.h:48
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
#define gPad
Efficient implementation of a sum of PDFs of the form.
Definition RooAddPdf.h:33
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition RooArgList.h:22
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:55
Plain Gaussian p.d.f.
Definition RooGaussian.h:24
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:43
static RooPlot * frame(const RooAbsRealLValue &var, double xmin, double xmax, Int_t nBins)
Create a new frame for a given variable in x.
Definition RooPlot.cxx:239
virtual void SetMinimum(double minimum=-1111)
Set minimum value of Y axis.
Definition RooPlot.cxx:1062
TAxis * GetYaxis() const
Definition RooPlot.cxx:1279
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
Definition RooPlot.cxx:652
RooRealVar represents a variable that can be changed from the outside.
Definition RooRealVar.h:37
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:298
The Canvas class.
Definition TCanvas.h:23
RooCmdArg Bins(Int_t nbin)
RooCmdArg Components(Args_t &&... argsOrArgSet)
RooCmdArg FillColor(Color_t color)
RooCmdArg DrawOption(const char *opt)
RooCmdArg LineWidth(Width_t width)
RooCmdArg VisualizeError(const RooDataSet &paramData, double Z=1)
RooCmdArg LineColor(Color_t color)
RooCmdArg LineStyle(Style_t style)
Double_t x[n]
Definition legend1.C:17
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition JSONIO.h:26
const char * Title
Definition TXMLSetup.cxx:68
TMarker m
Definition textangle.C:8
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- The following expressions will be evaluated in cache-and-track mode: (sig,bkg)
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) INFO: visualizing 1-sigma uncertainties in parameters (m,s,fsig,m2,s2) from fit result fitresult_model_genData using 315 samplings.
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsReal::plotOn(model) INFO: visualizing 1-sigma uncertainties in parameters (m,s,fsig,m2,s2) from fit result fitresult_model_genData using 315 samplings.
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) directly selected PDF components: (bkg)
[#1] INFO:Plotting -- RooAbsPdf::plotOn(model) indirectly selected PDF components: ()
Date
April 2009
Author
Wouter Verkerke

Definition in file rf610_visualerror.C.