LayerData holds the data of one layer.
LayerData holds the data of one layer, but not its layout
Definition at line 436 of file NeuralNet.h.
Public Types | |
typedef DropContainer::const_iterator | const_dropout_iterator |
typedef function_container_type::const_iterator | const_function_iterator_type |
typedef container_type::const_iterator | const_iterator_type |
typedef std::vector< double > | container_type |
typedef std::vector< std::function< double(double)> > | function_container_type |
typedef function_container_type::iterator | function_iterator_type |
typedef container_type::iterator | iterator_type |
Public Member Functions | |
LayerData (const LayerData &other) | |
copy c'tor of LayerData | |
LayerData (const_iterator_type itInputBegin, const_iterator_type itInputEnd, ModeOutputValues eModeOutput=ModeOutputValues::DIRECT) | |
c'tor of LayerData | |
LayerData (LayerData &&other) | |
move c'tor of LayerData | |
LayerData (size_t inputSize) | |
c'tor of LayerData | |
LayerData (size_t size, const_iterator_type itWeightBegin, iterator_type itGradientBegin, std::shared_ptr< std::function< double(double)> > activationFunction, std::shared_ptr< std::function< double(double)> > inverseActivationFunction, ModeOutputValues eModeOutput=ModeOutputValues::DIRECT) | |
c'tor of LayerData | |
LayerData (size_t size, const_iterator_type itWeightBegin, std::shared_ptr< std::function< double(double)> > activationFunction, ModeOutputValues eModeOutput=ModeOutputValues::DIRECT) | |
c'tor of LayerData | |
~LayerData () | |
std::shared_ptr< std::function< double(double)> > | activationFunction () const |
void | clear () |
clear the values and the deltas | |
void | clearDropOut () |
clear the drop-out-data for this layer | |
iterator_type | deltasBegin () |
returns iterator to the begin of the deltas (back-propagation) | |
const_iterator_type | deltasBegin () const |
returns const iterator to the begin of the deltas (back-propagation) | |
iterator_type | deltasEnd () |
returns iterator to the end of the deltas (back-propagation) | |
const_iterator_type | deltasEnd () const |
returns const iterator to the end of the deltas (back-propagation) | |
const_dropout_iterator | dropOut () const |
return the begin of the drop-out information | |
iterator_type | gradientsBegin () |
returns iterator to the begin of the gradients | |
const_iterator_type | gradientsBegin () const |
returns const iterator to the begin of the gradients | |
bool | hasDropOut () const |
has this layer drop-out turned on? | |
std::shared_ptr< std::function< double(double)> > | inverseActivationFunction () const |
ModeOutputValues | outputMode () const |
returns the output mode | |
container_type | probabilities () const |
computes the probabilities from the current node values and returns them | |
template<typename Iterator > | |
void | setDropOut (Iterator itDrop) |
set the drop-out info for this layer | |
void | setInput (const_iterator_type itInputBegin, const_iterator_type itInputEnd) |
change the input iterators | |
size_t | size () const |
return the size of the layer | |
iterator_type | valueGradientsBegin () |
returns iterator to the begin of the gradients of the node values | |
const_iterator_type | valueGradientsBegin () const |
returns const iterator to the begin of the gradients | |
iterator_type | valueGradientsEnd () |
returns iterator to the end of the gradients of the node values | |
const_iterator_type | valueGradientsEnd () const |
returns const iterator to the end of the gradients | |
iterator_type | valuesBegin () |
returns iterator to the begin of the (node) values | |
const_iterator_type | valuesBegin () const |
returns const iterator to the begin of the (node) values | |
iterator_type | valuesEnd () |
returns iterator to the end of the (node) values | |
const_iterator_type | valuesEnd () const |
returns iterator to the end of the (node) values | |
const_iterator_type | weightsBegin () const |
returns const iterator to the begin of the weights for this layer | |
Private Member Functions | |
container_type | computeProbabilities () const |
compute the probabilities from the node values | |
Private Attributes | |
std::shared_ptr< std::function< double(double)> > | m_activationFunction |
activation function for this layer | |
std::vector< double > | m_deltas |
stores the deltas for the DNN training | |
ModeOutputValues | m_eModeOutput |
stores the output mode (DIRECT, SIGMOID, SOFTMAX) | |
bool | m_hasDropOut |
dropOut is turned on? | |
bool | m_hasGradients |
does this layer have gradients (only if in training mode) | |
bool | m_hasWeights |
does this layer have weights (it does not if it is the input layer) | |
std::shared_ptr< std::function< double(double)> > | m_inverseActivationFunction |
inverse activation function for this layer | |
bool | m_isInputLayer |
is this layer an input layer | |
const_iterator_type | m_itConstWeightBegin |
const iterator to the first weight of this layer in the weight vector | |
const_dropout_iterator | m_itDropOut |
iterator to a container indicating if the corresponding node is to be dropped | |
iterator_type | m_itGradientBegin |
iterator to the first gradient of this layer in the gradient vector | |
const_iterator_type | m_itInputBegin |
iterator to the first of the nodes in the input node vector | |
const_iterator_type | m_itInputEnd |
iterator to the end of the nodes in the input node vector | |
size_t | m_size |
std::vector< double > | m_valueGradients |
stores the gradients of the values (nodes) | |
std::vector< double > | m_values |
stores the values of the nodes in this layer | |
#include <TMVA/NeuralNet.h>
typedef DropContainer::const_iterator TMVA::DNN::LayerData::const_dropout_iterator |
Definition at line 448 of file NeuralNet.h.
typedef function_container_type::const_iterator TMVA::DNN::LayerData::const_function_iterator_type |
Definition at line 446 of file NeuralNet.h.
typedef container_type::const_iterator TMVA::DNN::LayerData::const_iterator_type |
Definition at line 442 of file NeuralNet.h.
typedef std::vector<double> TMVA::DNN::LayerData::container_type |
Definition at line 439 of file NeuralNet.h.
typedef std::vector<std::function<double(double)> > TMVA::DNN::LayerData::function_container_type |
Definition at line 444 of file NeuralNet.h.
typedef function_container_type::iterator TMVA::DNN::LayerData::function_iterator_type |
Definition at line 445 of file NeuralNet.h.
typedef container_type::iterator TMVA::DNN::LayerData::iterator_type |
Definition at line 441 of file NeuralNet.h.
TMVA::DNN::LayerData::LayerData | ( | const_iterator_type | itInputBegin, |
const_iterator_type | itInputEnd, | ||
ModeOutputValues | eModeOutput = ModeOutputValues::DIRECT |
||
) |
c'tor of LayerData
C'tor of LayerData for the input layer
itInputBegin | iterator to the begin of a vector which holds the values of the nodes of the neural net |
itInputEnd | iterator to the end of a vector which holdsd the values of the nodes of the neural net |
eModeOutput | indicates a potential tranformation of the output values before further computation DIRECT does not further transformation; SIGMOID applies a sigmoid transformation to each output value (to create a probability); SOFTMAX applies a softmax transformation to all output values (mutually exclusive probability) |
Definition at line 81 of file NeuralNet.cxx.
TMVA::DNN::LayerData::LayerData | ( | size_t | inputSize | ) |
c'tor of LayerData
C'tor of LayerData for the input layer
inputSize | input size of this layer |
Definition at line 68 of file NeuralNet.cxx.
|
inline |
Definition at line 471 of file NeuralNet.h.
TMVA::DNN::LayerData::LayerData | ( | size_t | size, |
const_iterator_type | itWeightBegin, | ||
iterator_type | itGradientBegin, | ||
std::shared_ptr< std::function< double(double)> > | activationFunction, | ||
std::shared_ptr< std::function< double(double)> > | inverseActivationFunction, | ||
ModeOutputValues | eModeOutput = ModeOutputValues::DIRECT |
||
) |
c'tor of LayerData
C'tor of LayerData for all layers which are not the input layer; Used during the training of the DNN
size | size of the layer |
itWeightBegin | indicates the start of the weights for this layer on the weight vector |
itGradientBegin | indicates the start of the gradients for this layer on the gradient vector |
activationFunction | indicates activation functions for this layer |
inverseActivationFunction | indicates the inverse activation functions for this layer |
eModeOutput | indicates a potential tranformation of the output values before further computation DIRECT does not further transformation; SIGMOID applies a sigmoid transformation to each output value (to create a probability); SOFTMAX applies a softmax transformation to all output values (mutually exclusive probability) |
Definition at line 97 of file NeuralNet.cxx.
TMVA::DNN::LayerData::LayerData | ( | size_t | size, |
const_iterator_type | itWeightBegin, | ||
std::shared_ptr< std::function< double(double)> > | activationFunction, | ||
ModeOutputValues | eModeOutput = ModeOutputValues::DIRECT |
||
) |
c'tor of LayerData
C'tor of LayerData for all layers which are not the input layer; Used during the application of the DNN
size | size of the layer |
itWeightBegin | indicates the start of the weights for this layer on the weight vector |
activationFunction | indicates the activation function for this layer |
eModeOutput | indicates a potential tranformation of the output values before further computation DIRECT does not further transformation; SIGMOID applies a sigmoid transformation to each output value (to create a probability); SOFTMAX applies a softmax transformation to all output values (mutually exclusive probability) |
Definition at line 122 of file NeuralNet.cxx.
|
inline |
copy c'tor of LayerData
Definition at line 515 of file NeuralNet.h.
|
inline |
move c'tor of LayerData
Definition at line 538 of file NeuralNet.h.
|
inline |
Definition at line 607 of file NeuralNet.h.
|
inline |
clear the values and the deltas
Definition at line 576 of file NeuralNet.h.
|
inline |
clear the drop-out-data for this layer
Definition at line 620 of file NeuralNet.h.
|
private |
compute the probabilities from the node values
Definition at line 140 of file NeuralNet.cxx.
|
inline |
returns iterator to the begin of the deltas (back-propagation)
Definition at line 591 of file NeuralNet.h.
|
inline |
returns const iterator to the begin of the deltas (back-propagation)
Definition at line 594 of file NeuralNet.h.
|
inline |
returns iterator to the end of the deltas (back-propagation)
Definition at line 592 of file NeuralNet.h.
|
inline |
returns const iterator to the end of the deltas (back-propagation)
Definition at line 595 of file NeuralNet.h.
|
inline |
return the begin of the drop-out information
Definition at line 623 of file NeuralNet.h.
|
inline |
returns iterator to the begin of the gradients
Definition at line 603 of file NeuralNet.h.
|
inline |
returns const iterator to the begin of the gradients
Definition at line 604 of file NeuralNet.h.
|
inline |
has this layer drop-out turned on?
Definition at line 622 of file NeuralNet.h.
|
inline |
Definition at line 608 of file NeuralNet.h.
|
inline |
returns the output mode
Definition at line 588 of file NeuralNet.h.
|
inline |
computes the probabilities from the current node values and returns them
Definition at line 589 of file NeuralNet.h.
|
inline |
set the drop-out info for this layer
Definition at line 614 of file NeuralNet.h.
|
inline |
change the input iterators
itInputBegin | indicates the start of the input node vector |
itInputEnd | indicates the end of the input node vector |
Definition at line 565 of file NeuralNet.h.
|
inline |
return the size of the layer
Definition at line 625 of file NeuralNet.h.
|
inline |
returns iterator to the begin of the gradients of the node values
Definition at line 597 of file NeuralNet.h.
|
inline |
returns const iterator to the begin of the gradients
Definition at line 600 of file NeuralNet.h.
|
inline |
returns iterator to the end of the gradients of the node values
Definition at line 598 of file NeuralNet.h.
|
inline |
returns const iterator to the end of the gradients
Definition at line 601 of file NeuralNet.h.
|
inline |
returns iterator to the begin of the (node) values
Definition at line 585 of file NeuralNet.h.
|
inline |
returns const iterator to the begin of the (node) values
Definition at line 582 of file NeuralNet.h.
|
inline |
returns iterator to the end of the (node) values
Definition at line 586 of file NeuralNet.h.
|
inline |
returns iterator to the end of the (node) values
Definition at line 583 of file NeuralNet.h.
|
inline |
returns const iterator to the begin of the weights for this layer
Definition at line 605 of file NeuralNet.h.
activation function for this layer
Definition at line 651 of file NeuralNet.h.
|
private |
stores the deltas for the DNN training
Definition at line 642 of file NeuralNet.h.
|
private |
stores the output mode (DIRECT, SIGMOID, SOFTMAX)
Definition at line 658 of file NeuralNet.h.
|
private |
dropOut is turned on?
Definition at line 646 of file NeuralNet.h.
|
private |
does this layer have gradients (only if in training mode)
Definition at line 656 of file NeuralNet.h.
|
private |
does this layer have weights (it does not if it is the input layer)
Definition at line 655 of file NeuralNet.h.
|
private |
inverse activation function for this layer
Definition at line 652 of file NeuralNet.h.
|
private |
is this layer an input layer
Definition at line 654 of file NeuralNet.h.
|
private |
const iterator to the first weight of this layer in the weight vector
Definition at line 648 of file NeuralNet.h.
|
private |
iterator to a container indicating if the corresponding node is to be dropped
Definition at line 645 of file NeuralNet.h.
|
private |
iterator to the first gradient of this layer in the gradient vector
Definition at line 649 of file NeuralNet.h.
|
private |
iterator to the first of the nodes in the input node vector
Definition at line 639 of file NeuralNet.h.
|
private |
iterator to the end of the nodes in the input node vector
Definition at line 640 of file NeuralNet.h.
|
private |
Definition at line 637 of file NeuralNet.h.
|
private |
stores the gradients of the values (nodes)
Definition at line 643 of file NeuralNet.h.
|
private |
stores the values of the nodes in this layer
Definition at line 644 of file NeuralNet.h.