65 : fVisHistsUseImp(
kTRUE )
80 , fVisHistsUseImp(
kTRUE)
99 UInt_t neve = fTrainingEvents.size();
102 fNEveEffTrain = CalcWeightSum( &fTrainingEvents );
111 this->SetMethodBase(rfbase);
112 fRuleEnsemble.Initialize(
this );
113 fRuleFitParams.SetRuleFit(
this );
125 UInt_t nevents = fMethodRuleFit->Data()->GetNTrainingEvents();
126 std::vector<const TMVA::Event*> tmp;
127 for (
Long64_t ievt=0; ievt<nevents; ievt++) {
128 const Event *
event = fMethodRuleFit->GetEvent(ievt);
129 tmp.push_back(
event);
131 SetTrainingEvents( tmp );
140 fRuleEnsemble.MakeModel();
143 fRuleFitParams.Init();
152 fMethodBase = rfbase;
153 fMethodRuleFit =
dynamic_cast<const MethodRuleFit *
>(rfbase);
177 if (events==0)
return 0.0;
178 if (neve==0) neve=events->size();
181 for (
UInt_t ie=0; ie<neve; ie++) {
182 sumw += ((*events)[ie])->GetWeight();
192 fLogger->SetMinType(t);
193 fRuleEnsemble.SetMsgType(t);
194 fRuleFitParams.SetMsgType(t);
203 if (fMethodRuleFit==0) {
204 Log() << kFATAL <<
"RuleFit::BuildTree() - Attempting to build a tree NOT from a MethodRuleFit" <<
Endl;
206 std::vector<const Event *> evevec;
207 for (
UInt_t ie=0; ie<fNTreeSample; ie++) {
208 evevec.push_back(fTrainingEventsRndm[ie]);
223 if (fMethodRuleFit==0) {
224 Log() << kFATAL <<
"RuleFit::BuildTree() - Attempting to build a tree NOT from a MethodRuleFit" <<
Endl;
226 Log() << kDEBUG <<
"Creating a forest with " << fMethodRuleFit->GetNTrees() <<
" decision trees" <<
Endl;
227 Log() << kDEBUG <<
"Each tree is built using a random subsample with " << fNTreeSample <<
" events" <<
Endl;
229 Timer timer( fMethodRuleFit->GetNTrees(),
"RuleFit" );
238 Bool_t useBoost = fMethodRuleFit->UseBoost();
240 if (useBoost) SaveEventWeights();
242 for (
Int_t i=0; i<fMethodRuleFit->GetNTrees(); i++) {
244 if (!useBoost) ReshuffleEvents();
249 const Int_t ntriesMax=10;
252 frnd = 100*rndGen.
Uniform( fMethodRuleFit->GetMinFracNEve(), 0.5*fMethodRuleFit->GetMaxFracNEve() );
254 Bool_t useRandomisedTree = !useBoost;
255 dt =
new DecisionTree( fMethodRuleFit->GetSeparationBase(), frnd, fMethodRuleFit->GetNCuts(), &(fMethodRuleFit->DataInfo()), iclass, useRandomisedTree);
256 dt->
SetNVars(fMethodBase->GetNvar());
264 tryAgain = ((dt==0) && (ntries<ntriesMax));
267 fForest.push_back(dt);
268 if (useBoost) Boost(dt);
272 Log() << kWARNING <<
"------------------------------------------------------------------" <<
Endl;
273 Log() << kWARNING <<
" Failed growing a tree even after " << ntriesMax <<
" trials" <<
Endl;
274 Log() << kWARNING <<
" Possible solutions: " <<
Endl;
275 Log() << kWARNING <<
" 1. increase the number of training events" <<
Endl;
276 Log() << kWARNING <<
" 2. set a lower min fraction cut (fEventsMin)" <<
Endl;
277 Log() << kWARNING <<
" 3. maybe also decrease the max fraction cut (fEventsMax)" <<
Endl;
278 Log() << kWARNING <<
" If the above warning occurs rarely only, it can be ignored" <<
Endl;
279 Log() << kWARNING <<
"------------------------------------------------------------------" <<
Endl;
282 Log() << kDEBUG <<
"Built tree with minimum cut at N = " << frnd <<
"% events"
283 <<
" => N(nodes) = " << fForest.back()->GetNNodes()
284 <<
" ; n(tries) = " << ntries
289 if (useBoost) RestoreEventWeights();
300 fEventWeights.clear();
301 for (std::vector<const Event*>::iterator
e=fTrainingEvents.begin();
e!=fTrainingEvents.end(); ++
e) {
303 fEventWeights.push_back(
w);
313 if (fEventWeights.size() != fTrainingEvents.size()) {
314 Log() << kERROR <<
"RuleFit::RestoreEventWeights() called without having called SaveEventWeights() before!" <<
Endl;
317 for (std::vector<const Event*>::iterator
e=fTrainingEvents.begin();
e!=fTrainingEvents.end(); ++
e) {
318 (*e)->SetBoostWeight(fEventWeights[ie]);
333 std::vector<Char_t> correctSelected;
335 for (std::vector<const Event*>::iterator
e=fTrainingEvents.begin();
e!=fTrainingEvents.end(); ++
e) {
340 if (isSignalType == fMethodBase->DataInfo().IsSignal(*
e)) {
341 correctSelected.push_back(
kTRUE);
345 correctSelected.push_back(
kFALSE);
353 Double_t boostWeight = (err>0 ? (1.0-err)/err : 1000.0);
357 for (std::vector<const Event*>::iterator
e=fTrainingEvents.begin();
e!=fTrainingEvents.end(); ++
e) {
358 if (!correctSelected[ie])
359 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostWeight);
360 newSumw+=(*e)->GetWeight();
365 for (std::vector<const Event*>::iterator
e=fTrainingEvents.begin();
e!=fTrainingEvents.end(); ++
e) {
366 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * scale);
368 Log() << kDEBUG <<
"boostWeight = " << boostWeight <<
" scale = " << scale <<
Endl;
377 UInt_t ntrees = fForest.size();
378 if (ntrees==0)
return;
383 for (
UInt_t i=0; i<ntrees; i++) {
390 Log() << kVERBOSE <<
"Nodes in trees: average & std dev = " << sumn/ntrees <<
" , " << sig <<
Endl;
400 Log() << kVERBOSE <<
"Fitting rule/linear terms" <<
Endl;
401 fRuleFitParams.MakeGDPath();
409 Log() << kVERBOSE <<
"Calculating importance" <<
Endl;
410 fRuleEnsemble.CalcImportance();
411 fRuleEnsemble.CleanupRules();
412 fRuleEnsemble.CleanupLinear();
413 fRuleEnsemble.CalcVarImportance();
414 Log() << kVERBOSE <<
"Filling rule statistics" <<
Endl;
415 fRuleEnsemble.RuleResponseStats();
423 return fRuleEnsemble.EvalEvent(
e );
431 if (fMethodRuleFit==0) Log() << kFATAL <<
"RuleFit::SetTrainingEvents - MethodRuleFit not initialized" <<
Endl;
433 if (neve==0) Log() << kWARNING <<
"An empty sample of training events was given" <<
Endl;
436 fTrainingEvents.clear();
437 fTrainingEventsRndm.clear();
438 for (
UInt_t i=0; i<neve; i++) {
439 fTrainingEvents.push_back(
static_cast< const Event *
>(el[i]));
440 fTrainingEventsRndm.push_back(
static_cast< const Event *
>(el[i]));
444 std::shuffle(fTrainingEventsRndm.begin(), fTrainingEventsRndm.end(), fRNGEngine);
447 fNTreeSample =
static_cast<UInt_t>(neve*fMethodRuleFit->GetTreeEveFrac());
448 Log() << kDEBUG <<
"Number of events per tree : " << fNTreeSample
449 <<
" ( N(events) = " << neve <<
" )"
450 <<
" randomly drawn without replacement" <<
Endl;
459 if ((nevents<fTrainingEventsRndm.size()) && (nevents>0)) {
460 evevec.resize(nevents);
461 for (
UInt_t ie=0; ie<nevents; ie++) {
462 evevec[ie] = fTrainingEventsRndm[ie];
466 Log() << kWARNING <<
"GetRndmSampleEvents() : requested sub sample size larger than total size (BUG!).";
477 if (hlist.empty())
return;
484 for (
UInt_t i=0; i<hlist.size(); i++) {
511 for (
UInt_t i=0; i<hlist.size(); i++) {
530 if (!ruleHasVar)
return;
533 if(firstbin<0) firstbin=0;
541 Double_t fbfrac = (dormin ? ((fbmin+xbinw-rmin)/xbinw):1.0);
542 Double_t lbfrac = (dormax ? ((rmax-lbmax+xbinw)/xbinw):1.0);
547 for (
Int_t bin = binmin; bin<binmax+1; bin++) {
548 fbin = bin-firstbin+1;
552 else if (bin==binmax) {
560 if (fVisHistsUseImp) {
566 h2->
Fill(xc,0.5,val*
f);
576 if (!fRuleEnsemble.DoLinear())
return;
582 if (fVisHistsUseImp) {
583 val = fRuleEnsemble.GetLinImportance(vind);
586 val = fRuleEnsemble.GetLinCoefficients(vind);
588 for (
Int_t bin = firstbin; bin<lastbin+1; bin++) {
590 h2->
Fill(xc,0.5,val);
602 if (fVisHistsUseImp) {
609 Double_t rxmin, rxmax, rymin, rymax;
610 Bool_t dorxmin, dorxmax, dorymin, dorymax;
616 if (!(ruleHasVarX || ruleHasVarY))
return;
635 Double_t fxbinmin = (dorxmin ? ((xbinmin+xbinw-vxmin)/xbinw):1.0);
636 Double_t fxbinmax = (dorxmax ? ((vxmax-xbinmax+xbinw)/xbinw):1.0);
637 Double_t fybinmin = (dorymin ? ((ybinmin+ybinw-vymin)/ybinw):1.0);
638 Double_t fybinmax = (dorymax ? ((vymax-ybinmax+ybinw)/ybinw):1.0);
643 for (
Int_t binx = binxmin; binx<binxmax+1; binx++) {
647 else if (binx==binxmax) {
654 for (
Int_t biny = binymin; biny<binymax+1; biny++) {
658 else if (biny==binymax) {
665 h2->
Fill(xc,yc,val*fx*fy);
675 Int_t nhists = hlist.size();
676 Int_t nvar = fMethodBase->GetNvar();
677 if (nhists!=nvar) Log() << kFATAL <<
"BUG TRAP: number of hists is not equal the number of variables!" <<
Endl;
679 std::vector<Int_t> vindex;
682 for (
Int_t ih=0; ih<nhists; ih++) {
683 hstr = hlist[ih]->GetTitle();
684 for (
Int_t iv=0; iv<nvar; iv++) {
685 if (fMethodBase->GetInputTitle(iv) == hstr)
686 vindex.push_back(iv);
690 for (
Int_t iv=0; iv<nvar; iv++) {
693 FillCut(hlist[iv],rule,vindex[iv]);
697 FillLin(hlist[iv],vindex[iv]);
708 if (!(ruleimp>0))
return;
709 if (ruleimp<fRuleEnsemble.GetImportanceCut())
return;
711 Int_t nhists = hlist.size();
712 Int_t nvar = fMethodBase->GetNvar();
713 Int_t ncorr = (nvar*(nvar+1)/2)-nvar;
714 if (nhists!=ncorr) Log() << kERROR <<
"BUG TRAP: number of corr hists is not correct! ncorr = "
715 << ncorr <<
" nvar = " << nvar <<
" nhists = " << nhists <<
Endl;
717 std::vector< std::pair<Int_t,Int_t> > vindex;
721 for (
Int_t ih=0; ih<nhists; ih++) {
722 hstr = hlist[ih]->GetName();
723 if (GetCorrVars( hstr, var1, var2 )) {
724 iv1 = fMethodBase->DataInfo().FindVarIndex( var1 );
725 iv2 = fMethodBase->DataInfo().FindVarIndex( var2 );
726 vindex.push_back( std::pair<Int_t,Int_t>(iv2,iv1) );
729 Log() << kERROR <<
"BUG TRAP: should not be here - failed getting var1 and var2" <<
Endl;
733 for (
Int_t ih=0; ih<nhists; ih++) {
736 FillCorr(hlist[ih],rule,vindex[ih].
first,vindex[ih].second);
754 var1 = titleCopy(0,splitPos);
755 var2 = titleCopy(splitPos+4, titleCopy.
Length());
768 const TString directories[5] = {
"InputVariables_Id",
769 "InputVariables_Deco",
770 "InputVariables_PCA",
771 "InputVariables_Gauss",
772 "InputVariables_Gauss_Deco" };
774 const TString corrDirName =
"CorrelationPlots";
780 TDirectory* methodDir = fMethodBase->BaseDir();
786 Log() << kWARNING <<
"No basedir - BUG??" <<
Endl;
792 done = ((varDir!=0) || (
type>4));
795 Log() << kWARNING <<
"No input variable directory found - BUG?" <<
Endl;
800 Log() << kWARNING <<
"No correlation directory found" <<
Endl;
801 Log() << kWARNING <<
"Check for other warnings related to correlation histograms" <<
Endl;
805 Log() << kWARNING <<
"No rulefit method directory found - BUG?" <<
Endl;
809 varDirName = varDir->
GetName();
815 Log() << kWARNING <<
"No correlation directory found : " << corrDirName <<
Endl;
821 Log() << kDEBUG <<
"Got number of plots = " << noPlots <<
Endl;
824 std::vector<TH2F *> h1Vector;
825 std::vector<TH2F *> h2CorrVector;
828 while ((key = (
TKey*)next())) {
834 Log() << kDEBUG <<
"Got histogram : " << hname <<
Endl;
848 h1Vector.push_back( newhist );
855 while ((key = (
TKey*)nextCorr())) {
864 Log() << kDEBUG <<
"Got histogram (2D) : " << hname <<
Endl;
872 TH2F *newhist =
new TH2F(newname,htitle,
875 if (GetCorrVars( newname, var1, var2 )) {
876 Int_t iv1 = fMethodBase->DataInfo().FindVarIndex(var1);
877 Int_t iv2 = fMethodBase->DataInfo().FindVarIndex(var2);
892 h2CorrVector.push_back( newhist );
898 UInt_t nrules = fRuleEnsemble.GetNRules();
900 for (
UInt_t i=0; i<nrules; i++) {
901 rule = fRuleEnsemble.GetRulesConst(i);
902 FillVisHistCut(rule, h1Vector);
905 FillVisHistCut(0, h1Vector);
906 NormVisHists(h1Vector);
911 for (
UInt_t i=0; i<nrules; i++) {
912 rule = fRuleEnsemble.GetRulesConst(i);
913 FillVisHistCorr(rule, h2CorrVector);
915 NormVisHists(h2CorrVector);
919 for (
UInt_t i=0; i<h1Vector.size(); i++) h1Vector[i]->Write();
920 for (
UInt_t i=0; i<h2CorrVector.size(); i++) h2CorrVector[i]->Write();
928 TDirectory* methodDir = fMethodBase->BaseDir();
930 Log() << kWARNING <<
"<MakeDebugHists> No rulefit method directory found - bug?" <<
Endl;
935 std::vector<Double_t> distances;
936 std::vector<Double_t> fncuts;
937 std::vector<Double_t> fnvars;
942 UInt_t nrules = fRuleEnsemble.GetNRules();
943 for (
UInt_t i=0; i<nrules; i++) {
944 ruleA = fRuleEnsemble.GetRulesConst(i);
945 for (
UInt_t j=i+1; j<nrules; j++) {
946 ruleB = fRuleEnsemble.GetRulesConst(j);
951 distances.push_back(dAB);
952 fncuts.push_back(
static_cast<Double_t>(nc));
953 fnvars.push_back(
static_cast<Double_t>(nv));
954 if (dAB<dABmin) dABmin=dAB;
955 if (dAB>dABmax) dABmax=dAB;
960 TH1F *histDist =
new TH1F(
"RuleDist",
"Rule distances",100,dABmin,dABmax);
961 TTree *distNtuple =
new TTree(
"RuleDistNtuple",
"RuleDist ntuple");
965 distNtuple->
Branch(
"dist", &ntDist,
"dist/D");
966 distNtuple->
Branch(
"ncuts",&ntNcuts,
"ncuts/D");
967 distNtuple->
Branch(
"nvars",&ntNvars,
"nvars/D");
969 for (
UInt_t i=0; i<distances.size(); i++) {
970 histDist->
Fill(distances[i]);
971 ntDist = distances[i];
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t wmin
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t wmax
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
TClass instances represent classes, structs and namespaces in the ROOT type system.
Bool_t InheritsFrom(const char *cl) const override
Return kTRUE if this class inherits from a class with name "classname".
static TClass * GetClass(const char *name, Bool_t load=kTRUE, Bool_t silent=kFALSE)
Static method returning pointer to TClass of the specified class name.
Describe directory structure in memory.
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
virtual TFile * GetFile() const
virtual Bool_t cd()
Change current directory to "this" directory.
virtual TList * GetListOfKeys() const
1-D histogram with a float per channel (see TH1 documentation)}
virtual Int_t GetNbinsY() const
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
virtual Int_t GetNbinsX() const
virtual void SetMaximum(Double_t maximum=-1111)
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void SetMinimum(Double_t minimum=-1111)
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
2-D histogram with a float per channel (see TH1 documentation)}
Int_t GetBin(Int_t binx, Int_t biny, Int_t binz=0) const override
Return Global bin number corresponding to binx,y,z.
Int_t Fill(Double_t) override
Invalid Fill method.
Book space in a file, create I/O buffers, to fill them, (un)compress them.
virtual const char * GetClassName() const
virtual TObject * ReadObj()
To read a TObject* from the file.
Implementation of a Decision Tree.
UInt_t BuildTree(const EventConstList &eventSample, DecisionTreeNode *node=nullptr)
building the decision tree by recursively calling the splitting of one (root-) node into two daughter...
void SetPruneMethod(EPruneMethod m=kCostComplexityPruning)
void SetPruneStrength(Double_t p)
Double_t CheckEvent(const TMVA::Event *, Bool_t UseYesNoLeaf=kFALSE) const
the event e is put into the decision tree (starting at the root node) and the output is NodeType (sig...
Double_t PruneTree(const EventConstList *validationSample=nullptr)
prune (get rid of internal nodes) the Decision tree to avoid overtraining several different pruning m...
Virtual base Class for all MVA method.
J Friedman's RuleFit method.
ostringstream derivative to redirect and format output
Bool_t GetCutRange(Int_t sel, Double_t &rmin, Double_t &rmax, Bool_t &dormin, Bool_t &dormax) const
get cut range for a given selector
A class implementing various fits of rule ensembles.
void GetRndmSampleEvents(std::vector< const TMVA::Event * > &evevec, UInt_t nevents)
draw a random subsample of the training events without replacement
Double_t EvalEvent(const Event &e)
evaluate single event
void SetMethodBase(const MethodBase *rfbase)
set MethodBase
void InitPtrs(const TMVA::MethodBase *rfbase)
initialize pointers
void Boost(TMVA::DecisionTree *dt)
Boost the events.
void ForestStatistics()
summary of statistics of all trees
static const Int_t randSEED
void CalcImportance()
calculates the importance of each rule
void SetMsgType(EMsgType t)
set the current message type to that of mlog for this class and all other subtools
void Initialize(const TMVA::MethodBase *rfbase)
initialize the parameters of the RuleFit method and make rules
virtual ~RuleFit(void)
destructor
void FillVisHistCorr(const Rule *rule, std::vector< TH2F * > &hlist)
help routine to MakeVisHists() - fills for all correlation plots
std::default_random_engine fRNGEngine
void InitNEveEff()
init effective number of events (using event weights)
void SaveEventWeights()
save event weights - must be done before making the forest
void FillCut(TH2F *h2, const TMVA::Rule *rule, Int_t vind)
Fill cut.
void FillLin(TH2F *h2, Int_t vind)
fill lin
Bool_t GetCorrVars(TString &title, TString &var1, TString &var2)
get first and second variables from title
void MakeForest()
make a forest of decisiontrees
const std::vector< const TMVA::DecisionTree * > & GetForest() const
void FitCoefficients()
Fit the coefficients for the rule ensemble.
const MethodBase * GetMethodBase() const
void FillCorr(TH2F *h2, const TMVA::Rule *rule, Int_t v1, Int_t v2)
fill rule correlation between vx and vy, weighted with either the importance or the coefficient
void NormVisHists(std::vector< TH2F * > &hlist)
normalize rule importance hists
void RestoreEventWeights()
save event weights - must be done before making the forest
void MakeVisHists()
this will create histograms visualizing the rule ensemble
void FillVisHistCut(const Rule *rule, std::vector< TH2F * > &hlist)
help routine to MakeVisHists() - fills for all variables
void BuildTree(TMVA::DecisionTree *dt)
build the decision tree using fNTreeSample events from fTrainingEventsRndm
const std::vector< const TMVA::Event * > & GetTrainingEvents() const
const MethodRuleFit * GetMethodRuleFit() const
void SetTrainingEvents(const std::vector< const TMVA::Event * > &el)
set the training events randomly
void Copy(const RuleFit &other)
copy method
const RuleEnsemble & GetRuleEnsemble() const
Double_t CalcWeightSum(const std::vector< const TMVA::Event * > *events, UInt_t neve=0)
calculate the sum of weights
RuleFit(void)
default constructor
void MakeDebugHists()
this will create a histograms intended rather for debugging or for the curious user
Implementation of a rule.
Double_t GetSupport() const
UInt_t GetNumVarsUsed() const
const RuleCut * GetRuleCut() const
Double_t GetCoefficient() const
Double_t GetImportance() const
Double_t RuleDist(const Rule &other, Bool_t useCutValue) const
Returns:
Bool_t ContainsVariable(UInt_t iv) const
check if variable in node
Timing information for training and evaluation of MVA methods.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
const char * GetName() const override
Returns name of object.
const char * GetTitle() const override
Returns title of object.
Random number generator class based on M.
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
TString & ReplaceAll(const TString &s1, const TString &s2)
Bool_t BeginsWith(const char *s, ECaseCompare cmp=kExact) const
TString & Remove(Ssiz_t pos)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
A TTree represents a columnar dataset.
virtual Int_t Fill()
Fill all branches.
TBranch * Branch(const char *name, T *obj, Int_t bufsize=32000, Int_t splitlevel=99)
Add a new branch, and infer the data type from the type of obj being passed.
Int_t Write(const char *name=nullptr, Int_t option=0, Int_t bufsize=0) override
Write this object to the current directory.
MsgLogger & Endl(MsgLogger &ml)
Double_t Sqrt(Double_t x)
Returns the square root of x.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.