57 predict(
"predict",
"xgboost"),
59 xgbdmatrix(
"xgb.DMatrix"),
62 asfactor(
"as.factor"),
63 asmatrix(
"as.matrix"),
76 predict(
"predict",
"xgboost"),
78 xgbdmatrix(
"xgb.DMatrix"),
81 asfactor(
"as.factor"),
82 asmatrix(
"as.matrix"),
108 Error(
"Init",
"R's package xgboost can not be loaded.");
109 Log() << kFATAL <<
" R's package xgboost can not be loaded."
129 if (
Data()->GetNTrainingEvents() == 0)
Log() << kFATAL <<
"<Train> Data() has zero events" <<
Endl;
132 params[
"eta"] =
fEta;
156 DeclareOptionRef(
fEta,
"Eta",
"Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the weights of new features. and eta actually shrinks the feature weights to make the boosting process more conservative.");
168 Log() << kINFO <<
"Testing Classification RXGB METHOD " <<
Endl;
181 for (
UInt_t i = 0; i < nvar; i++) {
196 if (firstEvt > lastEvt || lastEvt > nEvents) lastEvt = nEvents;
197 if (firstEvt < 0) firstEvt = 0;
199 nEvents = lastEvt-firstEvt;
211 std::vector<std::vector<Float_t> > inputData(nvars);
212 for (
UInt_t i = 0; i < nvars; i++) {
213 inputData[i] = std::vector<Float_t>(nEvents);
216 for (
Int_t ievt=firstEvt; ievt<lastEvt; ievt++) {
219 assert(nvars ==
e->GetNVariables());
220 for (
UInt_t i = 0; i < nvars; i++) {
221 inputData[i][ievt] =
e->GetValue(i);
228 for (
UInt_t i = 0; i < nvars; i++) {
234 std::vector<Double_t> mvaValues(nEvents);
236 mvaValues = pred.
As<std::vector<Double_t>>();
239 Log() << kINFO <<
Form(
"Dataset[%s] : ",
DataInfo().
GetName())<<
"Elapsed time for evaluation of " << nEvents <<
" events: "
256 Log() <<
"Decision Trees and Rule-Based Models " <<
Endl;
270 TString path = GetWeightFileDir() +
"/" + GetName() +
".RData";
275 SEXP Model = xgbload(path);
#define REGISTER_METHOD(CLASS)
for example
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
This is a class to create DataFrames from ROOT to R.
static TRInterface & Instance()
static method to get an TRInterface instance reference
Bool_t Require(TString pkg)
Method to load an R's package.
This is a class to get ROOT's objects from R's objects.
T As()
Some datatypes of ROOT or c++ can be wrapped in to a TRObject, this method lets you unwrap those data...
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNVariables() const
std::vector< TString > GetListOfVariables() const
returns list of variables
const Event * GetEvent() const
returns event without transformations
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
UInt_t GetNVariables() const
access the number of variables through the datasetinfo
void SetCurrentEvent(Long64_t ievt) const
std::vector< Float_t > & GetValues()
const char * GetName() const
Bool_t IsModelPersistence() const
const TString & GetWeightFileDir() const
const TString & GetMethodName() const
const Event * GetEvent() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
void ReadStateFromFile()
Function to write options and weights to file.
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
std::vector< UInt_t > fFactorNumeric
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
void GetHelpMessage() const
ROOT::R::TRFunctionImport xgbtrain
MethodRXGB(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
static Bool_t IsModuleLoaded
ROOT::R::TRFunctionImport asmatrix
virtual void TestClassification()
initialization
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
virtual void MakeClass(const TString &classFileName=TString("")) const
create reader class for method (classification only at present)
ROOT::R::TRFunctionImport xgbsave
ROOT::R::TRObject * fModel
ROOT::R::TRFunctionImport xgbdmatrix
ROOT::R::TRFunctionImport predict
std::vector< std::string > fFactorTrain
ROOT::R::TRDataFrame fDfTrain
Timing information for training and evaluation of MVA methods.
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
Singleton class for Global types used by TMVA.
const Rcpp::internal::NamedPlaceHolder & Label
create variable transformations
MsgLogger & Endl(MsgLogger &ml)