26#ifndef ROOT_TMVA_MethodKNN
27#define ROOT_TMVA_MethodKNN
60 const TString& theOption =
"KNN");
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
A ROOT file is composed of a header, followed by consecutive data records (TKey instances) with a wel...
Class that contains all the data information.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Analysis of k-nearest neighbor.
void Init(void)
Initialization.
Int_t fBalanceDepth
number of binary tree levels used for balancing tree
void MakeKNN(void)
create kNN
TString fKernel
="Gaus","Poln" - kernel type for smoothing
Float_t fScaleFrac
fraction of events used to compute variable width
virtual ~MethodKNN(void)
destructor
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
const std::vector< Double_t > getRMS(const kNN::List &rlist, const kNN::Event &event_knn) const
Get polynomial kernel radius.
const Ranking * CreateRanking()
no ranking available
Int_t fTreeOptDepth
number of binary tree levels used for optimization
Double_t fSumOfWeightsS
sum-of-weights for signal training events
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
Double_t getKernelRadius(const kNN::List &rlist) const
Get polynomial kernel radius.
void GetHelpMessage() const
get help message text
const std::vector< Float_t > & GetRegressionValues()
Return vector of averages for target values of k-nearest neighbors.
Double_t fSumOfWeightsB
sum-of-weights for background training events
kNN::EventVec fEvent
! (untouched) events used for learning
void Train(void)
kNN training
void ReadWeightsFromStream(std::istream &istr)
read the weights
double getLDAValue(const kNN::List &rlist, const kNN::Event &event_knn)
Double_t PolnKernel(Double_t value) const
polynomial kernel
void ProcessOptions()
process the options specified by the user
void ReadWeightsFromXML(void *wghtnode)
void AddWeightsXMLTo(void *parent) const
write weights to XML
kNN::ModulekNN * fModule
! module where all work is done
Bool_t fUseLDA
use local linear discriminant analysis to compute MVA
Float_t fSigmaFact
scale factor for Gaussian sigma in Gaus. kernel
Bool_t fTrim
set equal number of signal and background events
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
Compute classifier response.
Bool_t fUseWeight
use weights to count kNN
Bool_t fUseKernel
use polynomial kernel weight function
void DeclareOptions()
MethodKNN options.
void WriteWeightsToStream(TFile &rf) const
save weights to ROOT file
LDA fLDA
! Experimental feature for local knn analysis
Double_t GausKernel(const kNN::Event &event_knn, const kNN::Event &event, const std::vector< Double_t > &svec) const
Gaussian kernel.
Int_t fnkNN
number of k-nearest neighbors
Ranking for variables in method (implementation)
kNN::Event describes point in input variable vector-space, with additional functionality like distanc...
std::vector< TMVA::kNN::Event > EventVec
create variable transformations