75#ifndef ROOT_TMVA_MethodCFMlpANN
76#define ROOT_TMVA_MethodCFMlpANN
102 const TString& theOption =
"3000:N-1:N-2");
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Class that contains all the data information.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Implementation of Clermond-Ferrand artificial neural network.
Interface to Clermond-Ferrand artificial neural network.
const Ranking * CreateRanking()
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
returns CFMlpANN output (normalised within [0,1])
void PrintWeights(std::ostream &o) const
write the weights of the neural net
void MakeClassSpecific(std::ostream &, const TString &) const
Double_t GetData(Int_t isel, Int_t ivar) const
Int_t MethodCFMlpANN_nsel
Double_t EvalANN(std::vector< Double_t > &, Bool_t &isOK)
evaluates NN value as function of input variables
void DeclareOptions()
define the options (their key words) that can be set in the option string know options: NCycles=xx :t...
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
CFMlpANN can handle classification with 2 classes.
void NN_ava(Double_t *)
auxiliary functions
std::vector< Int_t > * fClass
void AddWeightsXMLTo(void *parent) const
write weights to xml file
void ProcessOptions()
decode the options in the option string
void Train(void)
training of the Clement-Ferrand NN classifier
Double_t NN_fonc(Int_t, Double_t) const
activation function
void ReadWeightsFromStream(std::istream &istr)
read back the weight from the training from file (stream)
void MakeClassSpecificHeader(std::ostream &, const TString &="") const
write specific classifier response for header
virtual ~MethodCFMlpANN(void)
destructor
void Init(void)
default initialisation called by all constructors
Int_t GetClass(Int_t ivar) const
Int_t DataInterface(Double_t *, Double_t *, Int_t *, Int_t *, Int_t *, Int_t *, Double_t *, Int_t *, Int_t *)
data interface function
void ReadWeightsFromXML(void *wghtnode)
read weights from xml file
void GetHelpMessage() const
get help message text
Ranking for variables in method (implementation)
create variable transformations